• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 39 Issue 11
    Nov.  2014
    Turn off MathJax
    Article Contents
    Xu Hongjie, Sang Shuxun, Yi Tongsheng, Zhao Xia, Liu Huihu, Li Lin, 2014. Control Mechanism of Buried Depth and In-Situ Stress for Coal Reservoir Permeability in Western Guizhou. Earth Science, 39(11): 1507-1516. doi: 10.3799/dqkx.2014.143
    Citation: Xu Hongjie, Sang Shuxun, Yi Tongsheng, Zhao Xia, Liu Huihu, Li Lin, 2014. Control Mechanism of Buried Depth and In-Situ Stress for Coal Reservoir Permeability in Western Guizhou. Earth Science, 39(11): 1507-1516. doi: 10.3799/dqkx.2014.143

    Control Mechanism of Buried Depth and In-Situ Stress for Coal Reservoir Permeability in Western Guizhou

    doi: 10.3799/dqkx.2014.143
    • Received Date: 2013-12-18
    • Publish Date: 2014-11-01
    • Based on geological analysis of data of 16 testing wells in the Liupanshui and Zhina coalfields, the spatial distribution of coal reservoir permeability and characteristics of in-situ stress in the western Guizhou are discussed, and the control mechanism of buried depth and in-situ stress for coal reservoir permeability is obtained in this study. It is shown that the coal reservoirs have the characteristic of ultra-low and low permeability (< 0.1×10-9m2), and the permeability of coal reservoir with 0.1×10-9-1.0×10-9m2 has considerably large proportion. The type of in-situ stress field is gradually undergoing a possible change from dynamic field in shallow layer to hydrostatic pressure field in deep layer. It has a negative power exponent relationship of coal reservoir permeability and buried depth, but the change of permeability is in accordance with in-situ stress field changed. The permeability of coal reservoir varies in different testing wells, decreasing with the increased in-situ stress and depth, and its spatial distribution has a law of "low-high-low" from SW to NE for the intensity of the stress controlled. The role of coal depth to permeability is supposed to be the in-situ stress in action essentially. The main control mechanism of coal permeability difference is that the pore and fracture tend to compress or close caused by the deformation and fragmentation of coal reservoirs under the influence of high in-situ stress in regional tectonic location of study area.

       

    • loading
    • Anderson, E.M., 1972. The Dynamics of Faulting and Dyke Formation with Application to Britain. Hafner Pub. Co., New York, 1-50.
      Brown, E.F., Hoek, E., 1978. Technical Note Trends in Relationships between Measured In-Situ Stresses and Depth. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 15: 211-215.
      Chen, B.J., Wen, C.Q., Cao, S.Y., et al., 2008. The Prospect of Coalbed Methane Exploration and Utilization in Liupanshui Region. Guizhou Geology, 25(4): 270-275 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GZDZ200804011.htm
      Chen, G., Qin, Y., Yang, Q., et al., 2014. Different Stress Sensitivity of Different Coal Rank Reservoir Permeability and its Effect on the Coalbed Methane Output. Journal of Chnia Coal Society, 39(3): 504-509 (in Chinese with English abstract). doi: 10.13225/j.cnki.jccs.2013.1292
      Connell, L.D., Lu, M., Pan, Z., 2010. An Analytical Coal Permeability Model for Tri-Axial Strain and Stress Conditions. International Journal of Coal Geology, 84(2): 103-114. doi: 10.1016/j.coal.2010.08.011
      Fatt, I., Davis, D.H., 1952. Reduction in Permeability with Overburden Pressure. Journal of Petroleum Technology, 4(12): 34-41. doi: 10.2118/952329-G
      Fu, X.H., Qin, Y., Wei, C.T., 2007. Coalbed Methane Geology. China University of Mining and Technology Press, Xuzhou, 101-108 (in Chinese).
      Huang, W., Xu, H.J., Zhang, B.J., et al., 2013. Characteristics and CBM Potentials of Coal Seams in the Zhina Coalfield, Guizhou. Natural Gas Industry, 33(6): 1-7 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG201308007.htm
      Jiang, Y., 2008. CBM Geological Features and Exploitation Evaluation in Guanzhai Minefield, Qianxi County. Coal Geology of China, 20(4): 39-41 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGMT200804012.htm
      Li, J.Q., Liu, D.M., Yao, Y.B., et al., 2013. Controls of Gas Slippage and Effective Stress on the Gas Permeability of Coal. Natural Gas Geoscience, 24(5): 1074-1078 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201305028.htm
      Lian, C.B., Li, H.L., 2005. Mechanism Research about Effect of In-Situ Stress on Coalbed Permeability. Coal Geology & Exploration, 33(2): 30-32 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-MDKT200502008.htm
      Ma, Q., Harpalani, S., Liu, S.M., 2011. A Simplified Permeability Model for Coalbed Methane Reservoirs Based on Matchstick Strain and Constant Volume Theory. International Journal of Coal Geology, 85(1): 43-48. doi: 10.1016/j.coal.2010.09.007
      McLatchie, A.S., Hemstock, R.A., Young, L.W., 1958. The Effective Compressibility of Reservoir Rock and Its Effects on Permeability. Journal of Petroleum Technology, 10(6): 49-51. doi: 10.2118/894-G
      Meng, Z.P., Hou, Q.L., 2012. Experimental Research on Stress Sensitivity of Coal Reservoir and Its Influencing Factors. Journal of China Coal Society, 37(3): 430-437 (in Chinese with English abstract).
      Meng, Z.P., Lan, Q., Liu, C.L., et al., 2013. In-Situ Stress and Coal Reservoir Pressure in Southeast Margin of Ordos Basin and Their Coupling Relations. Journal of China Coal Society, 38(1): 122-128 (in Chinese with English abstract). http://www.ingentaconnect.com/content/jccs/jccs/2013/00000038/00000001/art00020
      Meng, Z.P., Tian, Y.D., Li, G.F., 2009. Relationship between Permeability of Coal Reservoirs and In-Situ Stress in Southern Qinshui Basin and Its Controlling Mechanism. Progress in Natural Science, 19(10): 1142-1148 (in Chinese). http://www.researchgate.net/publication/284674638_Relationship_between_permeability_of_coal_reservoirs_and_in-situ_stress_in_Southern_Qinshui_Basin_and_its_controlling_mechanism
      Meng, Z.P., Zhang, J.C., Wang, R., 2011. In-Situ Stress, Pore Pressure, and Stress-Dependent Permeability in the Southern Qinshui Basin. International Journal of Rock Mechanics and Mining Sciences, 48(1): 122-131. doi: 10.1016/j.ijrmms.2010.10.003
      Min, K.B., Rutqvist, J., Tsang, C.F., et al., 2004. Stress-Dependent Permeability of Fractured Rock Masses: A Numerical Study. International Journal of Rock Mechanics and Mining Sciences, 41(7): 1191-1210. doi: 10.1016/j.ijrmms.2004.05.005
      Qin, Y., Xiong, M.H., Yi, T.S., et al., 2008. On Unattached Multiple Superposed Coalbed-Methane System: In a Case of the Shuigonghe Syncline, Zhijin-Nayong Coalfield, Guizhou. Geological Review, 54(1): 65-70 (in Chinese with English abstract). http://www.researchgate.net/publication/285495774_On_Unattached_Multiple_Superposed_Coalbed-Methane_System_In_a_Case_of_the_Shuigonghe_Syncline_Zhijin-Nayong_Coalfield_Guizhou
      Shen, Y.L., Qin, Y., Guo, Y.H., et al., 2012. Sedimentary Controlling Factor of Unattached Multiple Superimposed Coalbed-Methane System Formation. Earth Science—Journal of China University of Geosciences, 37(3): 573-579 (in Chinese with English abstract). doi: 10.3799/dqkx.2012.064
      Su, X.B., Lin, X.Y., 2009. Coalbed Methane Geology. China Coal Industry Publishing House, Beijing, 39-44 (in Chinese).
      Tao, S., Wang, Y.B., Tang, D.Z., et al., 2012. Dynamic Variation Effects of Coal Permeability during the Coalbed Methane Development Process in the Qinshui Basin, China. International Journal of Coal Geology, 93: 16-22. doi: 10.1016/j.coal.2012.01.006
      Wang, J.L., Qin, Y., Fu, X.H., 2012. Dynamic Changes Laws of the Coal Reservoirs Permeability under the Superimposition of Multi Influential Factors. Journal of China Coal Society, 37(8): 1348-1353 (in Chinese with English abstract). http://www.ingentaconnect.com/content/jccs/jccs/2012/00000037/00000008/art00018
      Wang, X., Wu, Y.L., Qin, X.Y., et al., 2004. Prospects for Exploration and Development of Coalbed Methane in Yizikong Basin in Liupanshui Area. Oil & Gas Geology, 25(3): 309-313 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200403013.htm
      Wu, C.F., Qin, Y., Fu, X.H., et al., 2005. Microcosmic Dynamical Energies of Coalbed Gas Reservoir Formation of Qinshui Basin, Shanxi Province. Geoscience, 19(3): 449-457 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200503017.htm
      Wu, C.F., Wang, C., Jiang, W., 2014. Abnormal High-Pressure Formation Mechanism in Coal Reservoir of Bide-Santang Basin, Western Guizhou Province. Earth Science—Journal of China University of Geosciences, 39(1): 73-78 (in Chinese with English abstract). doi: 10.3799/dqkx.2014.007
      Xie, F.R., Cui, X.F., Zhao, J.T., et al., 2004. Regional Division of the Recent Tectonic Stress Field in China and Adjacent Areas. Chinese Journal of Geophysics, 47(4): 654-662 (in Chinese with English abstract). http://www.oalib.com/paper/1567663
      Xu, H., Tang, D.Z., Qin, Y., et al., 2011. Characteristics and Origin of Coal Reservoir Pressure in the West Guizhou Area. Journal of China University of Mining & Technology, 40(4): 556-560 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/zgkydxxb201104010
      Yang, Z.B., Qin, Y., Gao, D., 2011. Type and Geological Controls of Coalbed Methane-Bearing System under Coal Seam Groups from Bide-Santang Basin, Western Guizhou. Journal of China University of Mining & Technology, 40(2): 215-220 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKD201102010.htm
      Yi, T.S., Zhang, J., Li, X.M., 2007. Development Geology Assessment on Coalbed Methane in Panguan Syncline of Liupanshui Coal Field. Natural Gas Industry, 27(5): 29-31 (in Chinese with English abstract). http://www.researchgate.net/publication/284603925_Development_geology_assessment_on_coalbed_methane_in_panguan_syncline_of_liupanshui_coal_field
      Yu, S.Z., Peng, X.F., Li, W.P., 1994. Coal Mine Engineering Geology. China Coal Industry Publishing House, Beijing, 1-28 (in Chinese).
      Yue, G.Y., Zhang, S.J., Yang, W.N., 1994. Structural Deformation Patterns and Tectonic Stress Field in West-central Guizhou. Scientia Geologica Sinica, 29(1): 10-18 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX199401001.htm
      Zhong, L.W., Yuan, Z.R., Li, G.H., et al., 2004. Study on Relationship of Coal Body Structure and Permeability in Main Coal-Bearing Area in China. Coal Geology & Exploration, 32(Suppl. ): 77-81 (in Chinese).
      陈本金, 温春齐, 曹盛远, 等, 2008. 六盘水地区煤层气开发利用前景. 贵州地质, 25(4): 270-275. doi: 10.3969/j.issn.1000-5943.2008.04.008
      陈刚, 秦勇, 杨青, 等, 2014. 不同煤阶煤储层应力敏感性差异及其对煤层气产出的影响. 煤炭学报, 39(3): 504-509. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201403020.htm
      傅雪海, 秦勇, 韦重韬, 2007. 煤层气地质学. 徐州: 中国矿业大学出版社, 101-108.
      黄文, 徐宏杰, 张孟江, 等, 2013. 贵州省织纳煤田煤层特征及煤层气资源潜力. 天然气工业, 33(8): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201308007.htm
      江勇, 2008. 黔西县官寨井田煤层气地质特征及开发地质评价. 中国煤炭地质, 20(4): 39-41. doi: 10.3969/j.issn.1674-1803.2008.04.012
      李俊乾, 刘大锰, 姚艳斌, 等, 2013. 气体滑脱及有效应力对煤岩气相渗透率的控制作用. 天然气地球科学, 24(5): 1074-1078. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201305028.htm
      连承波, 李汉林, 2005. 地应力对煤储层渗透性影响的机理研究. 煤田地质与勘探, 33(2): 30-32. doi: 10.3969/j.issn.1001-1986.2005.02.009
      孟召平, 侯泉林, 2012. 煤储层应力敏感性及影响因素的试验分析. 煤炭学报, 37(3): 430-437. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201203014.htm
      孟召平, 蓝强, 刘翠丽, 等, 2013. 鄂尔多斯盆地东南缘地应力, 储层压力及其耦合关系. 煤炭学报, 38(1): 122-128. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201301019.htm
      孟召平, 田永东, 李国富, 2009. 沁水盆地南部煤储层渗透性与地应力之间关系和控制机理. 自然科学进展, 19(10): 1142-1148. doi: 10.3321/j.issn:1002-008X.2009.10.018
      秦勇, 熊孟辉, 易同生, 等, 2008. 论多层叠置独立含煤层气系统——以贵州织金-纳雍煤田水公河向斜为例. 地质论评, 54(1): 65-70. doi: 10.3321/j.issn:0371-5736.2008.01.008
      沈玉林, 秦勇, 郭英海, 等, 2012. "多层叠置独立含煤层气系统"形成的沉积控制因素. 地球科学——中国地质大学学报, 37(3): 573-579. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201203021.htm
      苏现波, 林晓英, 2009. 煤层气地质学. 北京: 煤炭工业出版社, 39-44.
      汪吉林, 秦勇, 傅雪海, 2012. 多因素叠加作用下煤储层渗透率的动态变化规律. 煤炭学报, 37(8): 1348-1353. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201208017.htm
      王旭, 邬云龙, 秦晓庆, 等, 2004. 浅析六盘水亦资孔盆地煤层气勘探开发前景. 石油与天然气地质, 25(3): 309-313. doi: 10.3321/j.issn:0253-9985.2004.03.014
      吴财芳, 秦勇, 傅雪海, 等, 2005. 山西沁水盆地煤层气成藏的微观动力能条件研究. 现代地质, 19(3): 449-457. doi: 10.3969/j.issn.1000-8527.2005.03.018
      吴财芳, 王聪, 姜玮, 2014. 黔西比德-三塘盆地煤储层异常高压形成机制. 地球科学——中国地质大学学报, 39 (1): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201401008.htm
      谢富仁, 崔效锋, 赵建涛, 等, 2004. 中国大陆及邻区现代构造应力场分区. 地球物理学报, 47(4): 654-662. doi: 10.3321/j.issn:0001-5733.2004.04.016
      许浩, 汤达祯, 秦勇, 等, 2011. 黔西地区煤储层压力发育特征及成因. 中国矿业大学学报, 40(4): 556-560. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201104009.htm
      杨兆彪, 秦勇, 高弟, 2011. 黔西比德-三塘盆地煤层群含气系统类型及其形成机理. 中国矿业大学学报, 40(2): 215-220. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201102010.htm
      易同生, 张井, 李新民, 2007. 六盘水煤田盘关向斜煤层气开发地质评价. 天然气工业, 27(5): 29-31. doi: 10.3321/j.issn:1000-0976.2007.05.009
      于双忠, 彭向峰, 李文平, 1994. 煤矿工程地质学. 北京: 煤炭工业出版社, 1-28.
      乐光禹, 张时俊, 杨武年, 1994. 贵州中西部的构造格局与构造应力场. 地质科学, 29(1): 10-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199401001.htm
      钟玲文, 员争荣, 李贵红, 等, 2004. 我国主要含煤区煤体结构特征及与渗透性关系的研究. 煤田地质与勘探, 32(增刊): 77-81. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ200400004016.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(1)

      Article views (3473) PDF downloads(822) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return