• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 39 Issue 11
    Nov.  2014
    Turn off MathJax
    Article Contents
    Lin Linlin, Guo Huirong, Hao Xuan, Huang Yiqi, 2014. Determination of Diffusion Coefficients of Ethane in Water at High Pressure and Temperature with In-Situ Raman Spectroscopy. Earth Science, 39(11): 1584-1592. doi: 10.3799/dqkx.2014.151
    Citation: Lin Linlin, Guo Huirong, Hao Xuan, Huang Yiqi, 2014. Determination of Diffusion Coefficients of Ethane in Water at High Pressure and Temperature with In-Situ Raman Spectroscopy. Earth Science, 39(11): 1584-1592. doi: 10.3799/dqkx.2014.151

    Determination of Diffusion Coefficients of Ethane in Water at High Pressure and Temperature with In-Situ Raman Spectroscopy

    doi: 10.3799/dqkx.2014.151
    • Received Date: 2014-04-03
    • Publish Date: 2014-11-01
    • Ethane and methane are two main components of natural gas. Accurate diffusion coefficients at high temperature for ethane and methane are the key to calculate the diffusion and fractionation of gases in deep natural gas reservoirs, especially in unfractured shale and other geological materials with low permeability. However, the diffusion coefficients for ethane at pressures and temperatures near the reservoir conditions are scarce in the literature. In this study, diffusive transfer of ethane in water at 20MPa and from 273 to 393K was observed in a high-pressure optical capillary cell via Raman spectroscopy. Diffusion coefficients were then determined by the least-square method. The relationship between diffusion coefficients [D(C2H6) in m2/s] and temperature (T in K) was derived with Speedy-Angell power-law equation as: D(C2H6)=D0[(T/Ts)-1]γ, where D0=13.8055×10-9m2/s, Ts=237.4K, γ=1.7397. The diffusion coefficients of ethane are much smaller than those of methane at the same condition. The amount of methane and ethane diffused through some thick low permeability layers are calculated and the results show that such diffusivity difference can cause a significant fractionation of methane and ethane in thick shale layer.

       

    • loading
    • Akgerman, A., Gainer, J.L., 1972. Diffusion of Gases in Liquids. Industrial & Engineering Chemistry Fundamentals, 11(3): 373-379. doi: 10.1021/i160043a016
      Akita, K., 1981. Diffusivities of Gases in Aqueous Electrolyte Solutions. Industrial & Engineering Chemistry Fundamentals, 20(1): 89-94. doi: 10.1021/i100001a017
      Angell, C.A., Smith, D.L., 1982. Test of the Entropy Basis of the Vogel-Tammann-Fulcher Equation, Dielectric Relaxation of Polyalcohols near Tg. The Journal of Physical Chemistry, 86(19): 3845-3852. doi: 10.1021/j100216a028
      Baird, M.H.I., Davidson, J.F., 1962. Annular Jets-Ⅱ: Gas Absorption. Chemical Engineering Science, 17(6): 473-480. doi: 10.1016/0009-2509(62)85016-7
      Bethke, C.M., Lee, M.K., Park, J., 1993. Basin Modeling with Basin2. A Guide to Using Basin2, B2plot, B2video, and B2view, Hydrogeology Program. University of Illinois, Urbana.
      Busch, A., Alles, S., Gensterblum, Y., et al., 2008. Carbon Dioxide Storage Potential of Shales. International Journal of Greenhouse Gas Control, 2(3): 297-308. doi: 10.1016/j.ijggc.2008.03.003
      Crank, J., 1979. The Mathematics of Diffusion. Oxford University Press, Oxford. doi:10.1016/0306-4549 (77)90 072-x
      Cussler, E.L., 1984. Diffusion: Mass Transfer in Fluid Systems. Cambridge University Press, Cambridge, 1(2): 9. doi: 10.1002/aic.690310333
      Duan, Z.H., Mao, S.D., 2006. A Thermodynamic Model for Calculating Methane Solubility, Density and Gas Phase Composition of Methane-Bearing Aqueous Fluids from 273 to 523K and from 1 to 2000bar. Geochim. Cosmochim. Acta, 70 (13): 3369-3386. doi: 10.1016/j.gca.2006.03.018
      Fulcher, G.S., 1925. Analysis of Recent Measurements of the Viscosity of Glasses. Journal of the American Ceramic Society, 8(6): 339-355. doi: 10.1111/j.1151-2916.1925.tb16731.x
      Frank, M.J.W., Kuipers, J.A.M., Van Swaaij, W.P.M., 1996. Diffusion Coefficients and Viscosities of CO2+H2O, CO2+CH3OH, NH3+H2O, and NH3+CH3OH Liquid Mixtures. Journal of Chemical & Engineering Data, 41(2): 297-302. doi: 10.1021/je950157k
      Gubbins, K.E., Bhatia, K.K., Walker, R.D., 1966. Diffusion of Gases in Electrolytic Solutions. AIChE Journal, 12(3): 548-552. doi: 10.1002/aic.690120328
      Grathwohl, P., 1998. Diffusion in Natural Porous Media: Contaminant Transport Sorption-Desorption and Dissolution Kinetics (POD). Kluwer Academic Publishers, Boston. doi:10.1007/978-1-4615-568 3-1
      Guo, H.R., Chen, Y., Lu, W.J., et al., 2013. In Situ Raman Spectroscopic Study of Diffusion Coefficients of Methane in Liquid Water under High Pressure and Wide Temperatures. Fluid Phase Equilibria, 360: 274-278. doi: 10.1016/j.fluid.2013.09051
      Jiang, Y.Y., Xu, Z.H., Cao, J.L., 2011. Research on the Relationship between Solute Diffusion in Porous Media and Buoyed Weight of Porous Media. Mining Research and Development, 31(5): 30-34, 53 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYYK201105011.htm
      Katsanos, N.A., Kapolos, J., 1989. Diffusion Coefficients of Gases in Liquids and Partition Coefficients in Gas-Liquid Inter Phases by Reversed-Flow Gas Chromatography. Analytical Chemistry, 61(20): 2231-2237. doi: 10.1021/ac00195a004
      Lu, W.J., Chou, I.M., Burruss, R.C., et al., 2006. In Situ Study of Mass Transfer in Aqueous Solutions under High Pressures via Raman Spectroscopy: A New Method for the Determination of Diffusion Coefficients of Methane in Water near Hydrate Formation Conditions. Applied Spectroscopy, 60(2): 122-129. doi: 10.1366/000370206776023276
      Lü, Y.F., Chen, Z.M., Fu, G., 1993. A Study on the Sealing Property and the Effectiveness of Qingshankou Formation as a Gas Cap Rock in Chaochang Area, Songliao Basin. Petroleum Exploration and Development, 20(1): 55-61 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK199301009.htm
      Nelson, J.S., Simmons, E.C., 1995. Diffusion of Methane and Ethane through the Reservoir Cap Rock: Implications for the Timing and Duration of Catagenesis. AAPG Bulletin, 79(7): 1064-1073.
      Oelkers, E.H., 1991. Calculation of Diffusion Coefficients for Aqueous Organic Species at Temperatures from 0℃ to 350℃. Geochimica et Cosmochimica Acta, 55(12): 3515-3529. doi:10.1016/0016-7037 (91)90052-7
      Sachs, W., 1998. The Diffusional Transport of Methane in Liquid Water: Method and Result of Experimental Investigation at Elevated Pressure. Journal of Petroleum Science and Engineering, 21(3): 153-164. doi: 10.1016/S0920-4105(98)00048-5
      Speedy, R.J., Angell, C.A., 1976. Isothermal Compressibility of Supercooled Water and Evidence for a Thermodynamic Singularity at 45 ℃. The Journal of Chemical Physics, 65(3): 851-858. doi: 10.1063/1.433153
      Tang, M., Chi, Y.J., 2002. Tailored Analysis of Natural Gas Composition and Related Standardization. Chemical Engineering of Oil and Gas, 31(Suppl. ): 64-70 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_chemical-engineering-oil-gas_thesis/0201218469935.html
      Vogel, H., 1921. The Temperature Dependence Law of the Viscosity of Fluids. Phys. Z, 22: 645-646. http://www.scienceopen.com/document/vid/03b75fbd-9a6c-4659-96aa-44724d86e47d
      Witherspoon, P.A., Bonoli, L., 1969. Correlation of Diffusion Coefficients for Paraffin, Aromatic, and Cycloparaffin Hyclrocarbons in Water. Industrial & Engineering Chemistry Fundamentals, 8(3): 589-591. doi: 10.1021/i160031a038
      Witherspoon, P.A., Saraf, D.N., 1965. Diffusion of Methane, Ethane, Propane, and N-Butane in Water from 25℃ to 43℃. The Journal of Physical Chemistry, 69(11): 3752-3755. doi: 10.1021/j100895a017
      Wise, D.L., Houghton, G., 1966. The Diffusion Coefficients of Ten Slightly Soluble Gases in Water at 10℃ to 60℃. Chemical Engineering Science, 21(11): 999-1010. doi: 10.1016/0009-2509(66)85096-0
      Zhang, Z.S., 1990. Big Gas Fields in the World. Petroleum Industry Press, Beijing, 246-272 (in Chinese).
      姜元勇, 徐曾和, 曹建立, 2011. 多孔介质中的溶质扩散与浮重关系研究. 矿业研究与开发, 31(5): 30-34, 53. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201105011.htm
      吕延防, 陈章明, 付广, 1993. 松辽盆地朝长地区青山口组天然气盖层封闭特征及封闭有效性研究. 石油勘探与开发, 20(1): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK199301009.htm
      唐蒙, 迟永杰, 2002. 天然气组成常规分析方法及其标准化. 石油与天然气化工, 31(增刊): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-STQG2002S1018.htm
      张子枢, 1990. 世界大气田概论. 北京: 石油工业出版社, 246-256.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(1)

      Article views (3595) PDF downloads(406) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return