• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 39 Issue 12
    Dec.  2014
    Turn off MathJax
    Article Contents
    Guo Quan, Yang Yichun, Lü Jun, Teng Pengxiao, 2014. Observation of Local Infrasound Coupled by Seismic Wave on Wide Spread Infrasound Network. Earth Science, 39(12): 1807-1817. doi: 10.3799/dqkx.2014.164
    Citation: Guo Quan, Yang Yichun, Lü Jun, Teng Pengxiao, 2014. Observation of Local Infrasound Coupled by Seismic Wave on Wide Spread Infrasound Network. Earth Science, 39(12): 1807-1817. doi: 10.3799/dqkx.2014.164

    Observation of Local Infrasound Coupled by Seismic Wave on Wide Spread Infrasound Network

    doi: 10.3799/dqkx.2014.164
    • Received Date: 2013-12-31
    • Publish Date: 2014-12-01
    • A kind of least-square-error localization algorithm applied on wide spread infrasound network is proposed in this article. Models of cross correlation between distant sensors and atmosphere infrasound propagation are analyzed. The localization error caused by quantity and distribution structure of network and ray tracing of local infrasound in real atmosphere are also calculated. Infrasound coupled by local seismic Rayleigh wave of Lushan (Ya'an) earthquake on April 20th, 2013 is detected by infrasound network and could prove the algorithm and analysis above. Comparing infrasound signals with seismic recording of IRIS global network, we find that they ware well correlated for the corresponding time period in signal travel time, signal correlation (0.6-0.9), particle motion trajectory analysis, etc.. The zone of infrasound source calculated by the least-square-error localizing algorithm is not compact but its center (minimum value determined by least-square-error method) is less than 150 km distant from the epicenter. Due to the less absorption and refraction in atmosphere propagation, local infrasound is easily detected and recognized and could be a possible and feasible way to monitor earthquake and relationship between ground motion and pressure perturbation in atmosphere.

       

    • loading
    • Christie, D.R., Campus, P., 2009. The IMS Infrasound Network: Design and Establishment of Infrasound Stations. In: Le Pichon, A., Blanc, E., Hauchecorne, A., eds., Infrasound Monitoring for Atmospheric Studies. Springer, Berlin, 29-75.
      Cui, D.Y., He, Y.S., 2003. Attempt on Applying Azimuth of Multi-Station to Calculate the Earthquake Center. Seismological Research of Northeast China, 19(4): 30-34 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DDYJ200304005.htm
      Donn, W.L., Posmentier, E.S., 1964. Ground-Coupled Air Waves from the Great Alaskan Earthquake. Journal of Geophysical Research, 69(24): 5357-5361. doi: 10.1029/JZ069i024p05357
      Drob, D.P., Meier, R.R., et al., 2009. Inversion of Infrasound Signals for Passive Atmospheric Remote Sensing. In: Le Pichon, A., Blanc, E., Hauchecorne, A., eds., Infrasound Monitoring for Atmospheric Studies. Springer, Berlin, 701-731.
      Hobiger, M., Cornou, C., et al., 2013. Ground Structure Imaging by Inversions of Rayleigh Wave Ellipticity: Sensitivity Analysis and Application to European Strong-Motion Sites. Geophysical Journal International, 192(1): 207-229. doi: 10.1093/gji/ggs005
      Kong, X.L., Li, L.M., Luo, S.X., et al., 2008. Seismic Wave Ray Forward in Anisotropy Medium. Computing Techniques for Geophysical and Geochemical Exploration, 30(3): 178-184 (in Chinese with English abstract). http://www.researchgate.net/publication/292920022_Seismic_wave_ray_forward_in_anisotropy_medium
      Le Pichon, A., Guilbert, J., Vallée, M., et al., 2003. Infrasonic Imaging of the Kunlun Mountains for the Great 2001 China Earthquake. Geophysical Research Letters, 30(15). doi: 10.1029/2003GL017581
      Le Pichon, A., Guilbert, J., Vega, A., et al., 2002. Ground-Coupled Air Waves and Diffracted Infrasound from the Arequipa Earthquake of June 23, 2001. Geophysical Research Letters, 29(18): 33-1-33-4. doi: 10.1029/2002GL015052
      Lin, L., Yang, Y.C., 2010. Observation & Study of a Kind of Low-Frequency Atmospheric Infrasonic Waves. Acta Acustica. , 35(2): 200-207 (in Chinese with English abstract).
      Lü, J., Guo, Q., Feng, H.N., et al., 2012. Anomalous Infrasonic Waves before a Small Earthquake in Beijing. Chinese J. Geophys. , 55(10) : 3379-3385 (in Chinese with English abstract). doi: 10.1002/cjg2.1751/full
      Mack, H., Flinn, E.A., 1971. Analysis of the Spatial Coherence of Short-Period Acoustic-Gravity Waves in the Atmosphere. Geophysical Journal of the Royal Astronomical Society, 26(1-4): 255-269. doi: 10.1111/j.1365-246X.1971.tb03399.x
      Mikumo, T., Watada, S., 2009. Acoustic-Gravity Waves from Earthquake Sources. In: Le Pichon, A., Blanc, E., Hauchecorne, A., eds., Infrasound Monitoring for Atmospheric Studies. Springer, Berlin, 263-279.
      Olson, J.V., Wilson, C.R., Hansen, R.A., 2003. Infrasound Associated with the 2002 Denali Fault Earthquake, Alaska. Geophysical Research Letters, 30(23). doi: 10.1029/2003GL018568
      Poggi, V., Fäh, D., 2010. Estimating Rayleigh Wave Particle Motion from Three-Component Array Analysis of Ambient Vibrations. Geophysical Journal International, 180(1): 251-267. doi: 10.1111/j.1365-246X.2009.04402.x
      Shao, C.J., Tang, L., Li, X.F., 2005. Characteristics of Infrasonic Waves Caused by the Ms8.0 Earthquake in 2003 in Hokkaido, Japan. Earthquake, 25(1): 74-80 (in Chinese with English abstract). http://www.researchgate.net/publication/289896019_Characteristics_of_infrasonic_waves_caused_by_the_Ms80_earthquake_in_2003_in_Hokkaido_Japan
      Watada, S., Kunugi, T., Hirata, K., et al., 2006. Atmospheric Pressure Change Associated with the 2003 Tokachi-Oki Earthquake. Geophysical Research Letters, 33(24). doi: 10.1029/2006GL027967
      Xie, J.L., Tao, Z.D., Xie, Z.H., 2003. A High Sensitivity Wide-Band Infrasound Condenser Microphone. Nuclear Electronics & Detection Technology, 23(5): 428-432 (in Chinese with English abstract). http://www.researchgate.net/publication/292668839_High_sensitivity_wide-band_infrasound_condenser_microphone
      崔东源, 和跃时, 2003. 利用多台方位角计算震中的尝试. 东北地震研究, 19(4): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYJ200304005.htm
      孔选林, 李录明, 罗省贤, 2008. 各向异性介质中的地震波射线正演. 物探化探计算技术, 30(3): 178-184. doi: 10.3969/j.issn.1001-1749.2008.03.003
      林琳, 杨亦春, 2010. 大气中一种低频次声波观测研究. 声学学报, 35(2): 200-207. https://www.cnki.com.cn/Article/CJFDTOTAL-XIBA201002017.htm
      吕君, 郭泉, 冯浩楠, 等, 2012. 北京地震前的异常次声波. 地球物理学报, 55(10): 3379-3385. doi: 10.6038/j.issn.0001-5733.2012.10.020
      邵长金, 唐炼, 李相方, 2005.2003年日本北海道8.0级地震次声波特征研究. 地震, 25(1): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZN200501010.htm
      谢金来, 陶中达, 谢照华, 2003. 高灵敏度宽频带电容次声传感器. 核电子学与探测技术, 23(5): 428-432. doi: 10.3969/j.issn.0258-0934.2003.05.011
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(2)

      Article views (3877) PDF downloads(526) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return