• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 39 Issue 12
    Dec.  2014
    Turn off MathJax
    Article Contents
    Zeng Qingli, Liu Qingsheng, Zheng Jianping, Liu Zhifeng, Wang Hongcai, 2014. Magnetism of Granitic Gneiss from Chinese Continental Scientific Drilling Main Hole and Fluid Activities. Earth Science, 39(12): 1915-1926. doi: 10.3799/dqkx.2014.176
    Citation: Zeng Qingli, Liu Qingsheng, Zheng Jianping, Liu Zhifeng, Wang Hongcai, 2014. Magnetism of Granitic Gneiss from Chinese Continental Scientific Drilling Main Hole and Fluid Activities. Earth Science, 39(12): 1915-1926. doi: 10.3799/dqkx.2014.176

    Magnetism of Granitic Gneiss from Chinese Continental Scientific Drilling Main Hole and Fluid Activities

    doi: 10.3799/dqkx.2014.176
    • Received Date: 2014-01-03
    • Publish Date: 2014-12-01
    • Detailed magnetic studies and mineralogy analysis show that the granitic gneiss has the second highest (only second to the serpentinized garnet peridotite) low-field susceptibility (χ) (0.570×10-7-120.450×10-7m3·kg-1, average 29.996×10-7m3·kg-1) and the lowest natural remanent magnetization (NRM) (0.002×10-3-2.109×10-3Am2·kg-1, average 0.210×10-3Am2·kg-1). Temperature dependence of magnetic susceptibility, alternating field (AF) demagnetization and magnetic hysteresis properties suggest that the magnetic minerals in granitic gneiss are magnetite ± hematite, the magnetites are mainly multi-domain (MD), pseudo-single domain (PSD) magnetites are also presented in small amounts. The grain size of magnetites are obviously larger than that in the completely retrograded eclogites, which have the same magnetic mineral assemblage and experienced amphibolite facies retrograde metamorphism. The formation of MD magnetites are thought to be related with stronger fluid activities during the retrogression. Samples occurring out of the major gneiss subunit and adjacent to the eclogites, which have related high NRM, may reflect fluid movements between felsic and mafic UHPM rocks.

       

    • loading
    • Abalos, B., Aranguren, A., 1998. Anisotropy of Magnetic Susceptibility of Eclogites: Mineralogical Origin and Correlation with the Tectonic Fabric (Cabo Ortegal, Spain). Geodinamica Acta, 11(6): 271-283. doi: 10.1016/S0985-3111(99)80017-5
      Cong, B.L., Zhang, R.Y., Liou, J.G., et al., 1996. Metamorphic Evolution of UHPM Rocks. In: Cong, B.L., ed. Ultrahigh-Pressure Metamorphic Rocks in the Dabieshan-Sulu Region of China. Springer, Berlin, 128-160.
      Chen, R.X., Zheng, Y.F., Gong, B., et al., 2007. Origin of Retrograde Fluid in Ultrahigh-Pressure Metamorphic Rocks: Constraints from Mineral Hydrogen Isotope and Water Content Changes in Eclogite-Gneiss Transitions in the Sulu Orogen. Geochimica et Cosmochimica Acta, 71(9): 2299-2325. doi: 10.1016/j.gca.2007.02.012
      Day, R., Fuller, M., Schmidt, V.A., 1977. Hysteresis Properties of Titanomagnetites: Grain-Size and Compositional Dependence. Physics of the Earth and Planetary Interiors, 13(4): 260-267. doi: 10.1016/0031-9201(77)90108-X
      Dunlop, D.J., 1990. Developments in Rock Magnetism. Rep. Prog. Phys. , 53(6): 707-792. doi: 10.1088/0034-4885/53/6/002
      Dunlop, D.J., 2012. Magnetic Recording in Rocks. Physics Today, 65(6): 31-37. doi: 10.1063/PT.3.1604
      Dunlop, D.J., Özdemir, Ö., 2001. Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press, Cambridge, 262-287.
      de Faria, D.L.A., Silva, S.V., de Oliveria, M.T., 1997. Microspectroscopy of Some Iron Oxides Raman and Oxyhydroxides. Journal of Raman Spectroscopy, 28(11): 873-878. doi:10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO;2-B
      Fu, B., Touret, J.L.R., Zheng, Y.F., 2001. Fluid Inclusions in Coesite-Bearing Eclogites and Jadeite Quartzites at Shuanghe, Dabie Shan, China. Journal of Metamorphic Geology, 19(5): 31-548. doi: 10.1046/j.0263-4929.2001.00327.x
      Geuna, S.E., McEnroe, S.A., Robinson, P., et al., 2008. Magnetic Petrology of the Devonian Achala Batholith, Argentina: Titanohaematite as an Indicator of Highly Oxidized Magma during Crystallization and Cooling. Geophysical Journal International, 175(3): 925-941. doi: 10.1111/j.1365-246X.2008.03964.x
      Harrison, R.J., Feinberg, J.M., 2009. Mineral Magnetism: Providing New Insights into Geoscience Processes. Elements, 5(4): 209-214. doi: 10.2113/gselements.5.4.209
      Hacker, B.R., Wallis, S.R., McWilliams, M.O., et al., 2009. 40Ar/39Ar Constraints on the Tectonic History and Architecture of the Ultrahigh-Pressure Sulu Orogen. Journal of Metamorphic Geology, 27(9): 827-844. doi: 10.1111/j.1525-1314.2009.00840.x
      Hirajima, T., Ishiwatari, A., Cong, B., et al., 1990. Identification of Coesite in Mengzhong Eclogite from Donghai County, Northeastern Jiangsu Province, China. Mineralogical Magazine, 45: 579-583. http://ci.nii.ac.jp/naid/80005837940
      Liang, F.H., Su, S.G., You, Z.D., et al., 2005. Retrograde Metamorphism of Eclogites from the Main Hole (0-2000m) of the Chinese Continental Scientific Drilling, Donghai, Jiangsu Province. Geology in China, 32(2): 218-229 (in Chinese with English abstract).
      Liou, J.G., Zhang, R.Y., 1996. Occurrences of Intergranular Coesite in Ultrahigh-P Rocks from the Sulu Region, Eastern China: Implications for Lack of Fluid during Exhumation. American Mineralogist, 81: 1217-1221. doi: 10.2138/am-1996-9-1020
      Liu, F.L., Xu, Z.Q., Yang, J.S., et al., 2004. Geochemical Characteristics and UHP Metamorphism of Granite Gneisses in the Main Drilling Hole of Chinese Continental Scientific Drilling Project and It's Adjacent Area. Acta Petrologica Sinica, 20(1): 9-26 (in Chinese with English abstract). http://www.researchgate.net/publication/279593208_Geochemical_characteristics_and_UHP_metamorphism_of_granitic_gneisses_in_the_main_drilling_hole_of_Chinese_Continental_Scientific_Drilling_Project_and_its_adjacent_area
      Liu, Q.S., Liu, Q.S., Liu, Y.S., et al., 2008a. Magnetic Study of Mafic Granulite Xenoliths from the Hannuoba Basalt, North China. Geochemistry, Geophysics, Geosystems, 9(6): Q06008. doi: 10.1029/2008GC001952
      Liu, Q.S., Yu, Y., Muxworthy, A.R., et al., 2008b. Effects of Internal Stress on Remanence Intensity Jumps across the Verwey Transition for Multi-Domain Magnetite. Physics of the Earth and Planetary Interiors, 169(1-4): 100-107. doi: 10.1016/j.pepi.2008.07.008
      Liu, Q.S., Liu, Q.S., Yang, T., et al., 2009. Magnetic Study of the UHP Eclogites from the Chinese Continental Scientific Drilling (CCSD) Project. Journal of Geophysical Research, 114: B02106. doi: 10.1029/2008JB005917
      Liu, Q.S., Liu, Q.S., Zhang, Z.M., et al., 2007. Magnetic Properties of Ultrahigh-Pressure Eclogites Controlled by Retrograde Metamorphism: A Case Study from the ZK703 Drillhole in Donghai, Eastern China. Physics of the Earth and Planetary Interiors, 160(3-5): 181-191. doi: 10.1016/j.pepi.2006.10.001
      Liu, Q.S., Zeng, Q.L., Zheng, J.P., et al., 2010. Magnetic Properties of Serpentinized Garnet Peridotites from the CCSD Main Hole in the Sulu Ultrahigh-Pressure Metamorphic Belt, Eastern China. Journal of Geophysical Research, 115(1): B6. doi: 10.1029/2009JB000814
      Liu, X.C., Yang, N., Qu, W., 1999. An Experiment on the Crystallization of Felsic Gneiss from Shuanghe in the Dabie Mountains at 1.0-4.5GPa and Its Geological Implications. Acta Geoscientia Sinica, 20(2): 113-120 (in Chinese with English abstract).
      Meng, X.H., Yu, Q.F., Guo, Y.Z., et al., 2007. A Pilot Study on Paleomagnetism and Rock Magnetism of Maobei Eclogite. Earth Science——Journal of China University of Geosciences, 32(4): 533-539 (in Chinese with English abstract).
      Okay, A.I., Xu, S.T., Sengör, A.M.C., 1989. Coesite from the Dabie Shan Eclogites, Central China. European Journal of Mineralogy, (1): 595-598.
      Oufi, O., Cannat, M., Horen, H., 2002. Magnetic Properties of Variably Serpentinized Abyssal Peridotites. Journal of Geophysical Research, 107(B5): EPM 3-1-EPM 3-19. doi: 10.1029/2001JB000549
      Pan, Y.X., Zhu, R.X., 2005. Rock Magnetism and Magnetic Fabric Studies of the Ultrahigh-Pressure (UHP) Metamorphic Rocks from the Dabie Orogenic Belt, East-Central China: Implications for Retrograde Metamorphism. Acta Petrologica Sinica, 21(4): 1101-1108 (in Chinese with English abstract). http://www.oalib.com/paper/1472278
      Peters, C., Dekkers, M.J., 2003. Selected Room Temperature Magnetic Parameters as a Function of Mineralogy, Concentration and Grain Size. Physics and Chemistry of the Earth, 28(16-19): 659-667. doi: 10.1016/S1474-7065(03)00120-7
      Qi, X.X., Grimmer, J.C., Xu, Z.Q., 2009. Ultrahigh-Pressure Texture Inheritance during Retrogression: Evidence from Magnetofabrics in Eclogites and Ultramafic Rocks (Chinese Continental Scientific Drilling Project). Tectonophysics, 475(2): 267-278. doi: 10.1016/j.tecto.2008.09.015
      Ren, L.D., Niu, B.G., Wu, C.M., et al., 2008. The Retrograde Feature and Magnetite Formation in the Aegirine-Bearing Alkaline Granitic Gneiss in the Dabieshan Mountains. Journal of Mineralogy and Petrology, 28(4): 36-42(in Chinese with English abstract).
      Robinson, P., Harrison, R.J., McEnroe, S.A., et al., 2002. Lamellar Magnetism in the Haematite-Ilmenite Series as an Explanation for Strong Remanent Magnetization. Nature, 418(6897): 517-520. doi: 10.1038/nature00942
      Schmidt, M.W., Thompson, A.B., 1996. Epidote in Calc-Alkaline Magmas: An Experimental Study of Stability, Phase Relationships, and the Role of Epidote in Magmatic Evolution. American Mineralogist, 81: 462-474. doi: 10.2138/am-1996-3-420
      Strada, E., Talarico, F.M., Florindo, F., 2006. Magnetic Petrology of Variably Retrogressed Eclogites and Amphibolites: A Case Study from the Hercynian Basement of Northern Sardinia (Italy). Journal of Geophysical Research, 111(01): B12. doi: 10.1029/2006JB004574
      Wallis, S., Enami, M., Banno, S., 1999. The Sulu UHP Terrane: A Review of the Petrology and Structural Geology. International Geology Review, 41(10): 906-920. doi: 10.1080/00206819909465178
      Wang, Q., Burlini, L., Mainprice, D., et al., 2009. Geochemistry, Petrofabrics and Seismic Properties of Eclogites from the Chinese Continental Scientific Drilling Boreholes in the Sulu UHP Terrane, Eastern China. Tectonophysics, 475(2): 251-266. doi: 10.1016/j.tecto.2008.09.027
      Xu, H.J., Jin, Z.M., Mason, R., et al., 2009. Magnetic Susceptibility of Ultrahigh Pressure Eclogite: The Role of Retrogression. Tectonophysics, 475(2): 279-290. doi: 10.1016/j.tecto.2009.03.020
      Xu, H.J., Jing, Z.M., Ou, X.G., et al., 2004. Effects of Retrogression of Ultrahigh-Pressure Eclogites on Magnetic Susceptibility and Anisotropy. Earth Science——Journal of China University of Geosciences, 29(6): 674-684 (in Chinese with English abstract). http://www.researchgate.net/publication/286206081_Effects_of_retrogression_of_ultrahigh-pressure_eclogites_on_magnetic_susceptibility_and_anisotropy
      Xu, H.J., Jin, Z.M., Ou, X.G., 2006. Lithology Determination of Rocks from CCSD 100-2000m Main Hole by Magnetic Susceptibility and Density Using Discriminant Function Analysis. Earth Science——Journal of China University of Geosciences, 31(4): 513-519 (in Chinese with English abstract).
      Xu, S., Okay, A.I., Ji, S., et al., 1992. Diamond from the Dabie Shan Metamorphic Rocks and Its Implication for Tectonic Setting. Science, 256(5053): 80-82. doi: 10.1126/science.256.5053.80
      Xu, Z.Q., Yang, W.C., Ji, S.C., et al., 2009. Deep Root of a Continent-Continent Collision Belt: Evidence from the Chinese Continental Scientific Drilling (CCSD) Deep Borehole in the Sulu Ultrahigh-Pressure (HP-UHP) Metamorphic Terrane, China. Tectonophysics, 475(2): 204-219. doi: 10.1016/j.tecto.2009.02.029
      Yang, T., Liu, Q.S., Wu, Y., et al., 2006. Characteristics of Magnetic Susceptibility in the Depth of 100-2000m Mainhole of Chinese Continental Scientific Drilling and Its Geological Implications. Acta Petrologica Sinica, 22(7): 2089-2094 (in Chinese with English abstract). http://www.researchgate.net/publication/286323414_Characteristics_of_magnetic_susceptibility_in_the_depth_of_100_2000m_mainhole_of_Chinese_Continental_Scientific_Drilling_and_its_geological_implications/download
      Yang, W.C., Cheng, Z.Y., Chen, G.J., et al., 1999. Geophysical Investigations in Northern Sulu UHPM Belt, Part I: Deep Seismic Reflection. Chinese Journal of Geophysics, 42(1): 41-52 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX199904009.htm
      Zhang, R.Y., Liou, J.G., Zheng, Y.F. et al., 2003. Transition of UHP Eclogites to Gneissic Rocks of Low-Grade Amphibolite Facies during Exhumation: Evidence from the Dabie Terrane, Central China. Lithos, 70(3-4): 269-291. doi: 10.1016/S0024-4937(03)00102-6
      Zhang, Z.M., 1996. Disequilibrium Reactions and Kinetics of Ultra-High Pressure Metamorphic Rocks from the Dabie Mountains. Earth Science——Journal of China University of Geosciences, 21(5): 501-507 (in Chinese with English abstract).
      Zhang, Z.M., Xiao, Y.L., Hoefs, J., et al., 2006. Ultrahigh Pressure Metamorphic Rocks from the Chinese Continental Scientific Drilling Project: I. Petrology and Geochemistry of the Main Hole (0-2050m). Contributions to Mineralogy and Petrology, 152: 421-441. doi: 10.1007/s00410-006-0120-5
      Zhang, Z.M., Xu, Z.Q., Liu, F.L., et al., 2002. Composition and Metamorphism of the Root of Southern Sulu Orogen. Geological Bulletin of China, 21(10): 609-616 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/zgqydz200210003
      Zhang, Z.M., Xu, Z.Q., Liu, F.L., et al., 2004. Geochemistry of Eclogites from the Main Hole (100-2050m) of the Chinese Continental Scientific Drilling Project. Acta Petrologica Sinica, 20(1): 27-42 (in Chinese with English abstract).
      梁凤华, 苏尚国, 游振东, 等, 2005. 中国大陆科学钻探主孔0~2000m榴辉岩的退变质过程. 中国地质, 32(2): 218-229. doi: 10.3969/j.issn.1000-3657.2005.02.005
      刘福来, 许志琴, 杨经绥, 等, 2004. 中国大陆科学钻探工程主孔及周边地区花岗质片麻岩的地球化学性质和超高压变质作用标志的识别. 岩石学报, 20(1): 9-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200401001.htm
      刘晓春, 杨农, 曲玮, 1999. 大别山双河长英质片麻岩在1.0~4.5GPa下的结晶实验及其地质意义. 地球学报, 20(2): 113-120. doi: 10.3321/j.issn:1006-3021.1999.02.001
      孟小红, 余钦范, 郭友钊, 等, 2007. 毛北榴辉岩古地磁及岩石磁学初探. 地球科学——中国地质大学学报, 32(4): 533-539. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200704016.htm
      潘永信, 朱日祥, 2005. 大别山超高压变质岩带的岩石磁学和磁组构研究及其地质意义. 岩石学报, 21(4): 1101-1108. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200504007.htm
      任留东, 牛宝贵, 吴春明, 等, 2008. 大别山霓辉花岗片麻岩中磁铁矿的形成. 矿物岩石, 28(4): 36-42. doi: 10.3969/j.issn.1001-6872.2008.04.007
      徐海军, 金振民, 欧新功, 等, 2004. 超高压榴辉岩退变质作用对岩石磁化率的影响. 地球科学——中国地质大学学报, 29(6): 674-684. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200406005.htm
      徐海军, 金振民, 欧新功, 2006. 磁化率和密度对中国大陆科学钻探主孔100~2000m岩石类型的判别. 地球科学——中国地质大学学报, 31(4): 513-519. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200604007.htm
      杨涛, 刘庆生, 吴耀, 等, 2006. 中国大陆科学钻探(CCSD)主孔100~2000m区间磁化率的变异特征及其地质意义. 岩石学报, 22(7): 2089-2094. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200607036.htm
      杨文采, 程振炎, 陈国九, 等, 1999. 苏鲁超高压变质带北部地球物理调查(I): 深反射地震. 地球物理学报, 42(1): 41-52. doi: 10.3321/j.issn:0001-5733.1999.01.005
      张泽明, 1996. 大别山地区超高压变质岩的不平衡退变质反应及动力学. 地球科学——中国地质大学学报, 21(5): 501-507. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX605.009.htm
      张泽明, 许志琴, 刘福来, 等, 2002. 南苏鲁造山带根部的物质组成及变质作用. 地质通报, 21(10): 609-616. doi: 10.3969/j.issn.1671-2552.2002.10.003
      张泽明, 许志琴, 刘福来, 等, 2004. 中国大陆科学钻探工程主孔(100~2050m)榴辉岩岩石化学研究. 岩石学报, 20(1): 27-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200401002.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(2)

      Article views (3342) PDF downloads(545) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return