• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 40 Issue 1
    Jan.  2015
    Turn off MathJax
    Article Contents
    Lai Jianqing, Huang Min, Song Wenbin, Su Shengshun, Wang Shouliang, 2015. Geochemical Characteristics and Source of Ore-Forming Materials of Kaerqueka Copper Polymetallic Deposit in Qinghai Province, China. Earth Science, 40(1): 1-16. doi: 10.3799/dqkx.2015.001
    Citation: Lai Jianqing, Huang Min, Song Wenbin, Su Shengshun, Wang Shouliang, 2015. Geochemical Characteristics and Source of Ore-Forming Materials of Kaerqueka Copper Polymetallic Deposit in Qinghai Province, China. Earth Science, 40(1): 1-16. doi: 10.3799/dqkx.2015.001

    Geochemical Characteristics and Source of Ore-Forming Materials of Kaerqueka Copper Polymetallic Deposit in Qinghai Province, China

    doi: 10.3799/dqkx.2015.001
    • Received Date: 2014-04-03
    • Publish Date: 2015-01-15
    • Combined with field investigation and ore-forming geological conditions of the Kaerqueka copper polymetallic deposit, the geochemical characteristics of the deposit are summarized, the origin of the ore-forming materials is ascertained, and the rock-forming and ore-forming mechanisms are discussed according to the S, Pb isotopes as well as chemical analysis, including major element analysis, trace element analysis. Results of typical magmatic rocks, wall rocks and ores show that the magmatic rocks which were derived from deep and affected by crustal contamination during intrusion are intermediate acidity comagmatic rocks and belong to the high-K calc-alkaline series. All REE distribution patterns of different geologic bodies incline to the right and LREE-rich, indicating that the magmatic rock, skarn and ore belong to the same metallogenic system. The geochemistry of trace elements shows that the granites of the deposit occurred in volcanic arc environment. The δ34SCDT values of ore minerals lie between those of magmatic rock and country rock sulfur, with a range of 4.4‰ to 11.0‰, which indicates various metallogenic material sources. The Th/U values of lead isotope in ore minerals range from 3.46 to 3.69 and the μ values range from 9.46 to 9.52 (< 9.58), which fall between the values of crust and primitive mantle and indicate that the ore lead is characterized by both deep-sourced and crust-sourced origins. The tracer analysis regarding the characteristic parameters, lead composition model and Δβγ diagram show that the ore lead is mainly crust-derived and mixed with minor mantle-derived lead and affected by magmatism. The geochemical characteristics of Kaerqueka deposit suggest that the ore-forming materials mainly originated from magma with minor strata substance. The complicated evolution of magmatic rock is revealed by the porphyry-type copper-molybdenum mineralization in magmatic rock, the skarn-type lead-zinc mineralization following the contact of carbonate rock and the late low-medium hydrothermal vein-type gold mineralization, which indicates the Kaerqueka deposit is a polygenetic compound deposit.

       

    • loading
    • Ding, Q.F., 2004. Metallogenesis and Mineral Resources Assessment in Eastern Kunlun Orogenic Belt(Dissertation). Jilin University, Changchun, 25-28(in Chinese with English abstract).
      Ding, Q.F., Sun, F.Y., Li, Z.S., 2007. Composite Ore Prospect Areas in the East Kunlun Metallogenic Belt, Qinghai. Geology in China, 34(6): 1101-1108(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DIZI200706015.htm
      Feng, C.Y., Li, D.S., Qu, W.J., et al., 2009. Re-Os Isotopic Dating of Molybdenite from the Suolajier Skarn-Type Copper-Molybdenum Deposit of Qimantage Mountain in Qinghai Province and Its Geological Significance. Rock and Mineral Analysis, 28(3): 223-227(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS200903012.htm
      He, S.Y., Qi, L.Y., Shu, S.L., et al., 2008. Metallogenic Environment and Potential in the Qimantage Porphyry Copper Deposit, Qinghai. Geology and Prospecting, 44(2): 14-22(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzkt200802004.htm
      Herrmann, A.G., 1971. Yttrium and Lantbanides. In: Wedepohl, K.H., Correns, C.W., Shaw, D.M., eds., Handbook of Geochemistry. Springer-Verlag, 1(II/2), Berlin-Heidelberg, 39, 57-71.
      Jake, R.C., Andrew, C.K., Iain, M., et al., 2013. The Geochemistry and Petrogenesis of the Blue Draw Metagabbro. Lithos, 174: 271-290. doi: 10.1016/j.lithos.2012.06.035
      Jiang, C.F., Wang, Z.Q., Li, J.Y., 2000. Opening-Closing Tectonics of Central Orogenic Belt. Geological Publishing House, Beijing, 150-154(in Chinese).
      Lang, X.H., Tang, J.X., Chen, Y.C., et al., 2012. Neo-Tethys Mineralization on the Southern Margin of the Gangdise Metallogenic Belt, Tibet, China: Evidence from Re-Os Ages of Xiongcun Ore-Body No. I. Earth Science—Journal of China University of Geosciences, 37(3): 515-525(in Chinese with English abstract).
      Li, B.L., Sun, F.Y., Yu, X.F., et al., 2010. Genetic Type and Mineralizing Mechanism of the Yelasai Copper Deposit in Kaerqueka Area, Eastern Kunlun, Qinghai Province. Acta Petrologica Sinica, 26(12): 3796-3708(in Chinese with English abstract). http://www.researchgate.net/publication/279619365_Genetic_type_and_mineralizing_mechanism_of_the_Yelasai_copper_deposit_in_Kaerqoeka_area_eastern_Kunlun_Qinghai_Province
      Li, D.S., Zhang, Z.Y., Su, S.S., 2010. Geological Characteristics and Genesis of Kaerqueka Copper Molybdenum Deposit, Qinghai Province. Northwestern Geology, 43(4): 239-244(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_northwestern-geology_thesis/0201254328168.html
      Li, H., Xi, X.S., Wu, C.M., et al., 2013. Genesis of the Zhaokalong Fe-Cu Polymetallic Deposit at Yushu, China: Evidence from Ore Geochemistry and Fluid Inclusions. Acta Geologica Sinica (English Edition), 87(2): 486-500. doi: 10.1111/1755-6724.12063
      Li, L., Zheng, Y.F., Zhou, J.B., 2001. Dynamic Model for Pb Isotope Evolution in the Continental Crust of China. Acta Petrologica Sinica, 17(1): 61-68(in Chinese with English abstract).
      Li, S.J., Sun, F.Y., Wang, L., et al., 2008. Fluid Inclusion Studies of Porphyry Copper Mineralization in Kaerqueka Polymetallic Ore District, East Kunlun Mountains, Qinghai Province. Mineral Deposits, 27(3): 399-407(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200803011.htm
      Li, Y.H., Yan, Y.F., Tan, J., 2007. The Application of Rare Earth Elements in Research of Ore Deposits. Contributions to Geology and Mineral Resources Research, 22(4): 294-298(in Chinese with English abstract).
      Liu, B., Ma, C.Q., Guo, P., et al., 2013. Discovery of the Middle Devonian A-Type Granite from the Eastern Kunlun Orogen and Its Tectonic Implications. Earth Science—Journal of China University of Geosciences, 38(5): 947-962(in Chinese with English abstract). doi: 10.3799/dqkx.2013.093
      Lu, Y.F., 2004. Geo-Kit—A Geochemical Toolkit for Microsoft Excel. Geochimica, 33(5): 459-464(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geochimica_thesis/0201252981865.html
      Middlemost, E.A.K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. doi:101.1016/0012-8252(94)90029-9
      Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. doi: 10.1093/petrology/25.4.956
      Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. doi: 10.1007/BF00384745
      Qi, C.M., Zou, Z.R., Li, H.N., 1994. General Geochemistry. Geological Publishing House, Beijing, 167-180(in Chinese).
      Shen, N.P., Peng, J.T., Yuan, S.D., et al., 2008. Lead Isotope Composition and Its Significance for Ore-Forming Material of the Xujiashan Antimony Deposit, Hubei Province. Acta Mineralogica Sinica, 28(2): 169-176(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB200802009.htm
      Song, W.B., 2012. The Characteristics and Genesis of Kaerqueka Copper Polymetallic Deposit, Qinghai Province(Dissertation). Central South University, Changsha, 23-26(in Chinese with English abstract).
      Song, W.B., Lai, J.Q., Huang, M., et al., 2012. Characteristics of Fluid Inclusions and Origin of Kaerqueka Copper Polymetallic Deposit, Qinghai Province. The Chinese Journal of Nonferrous Metals, 22(3): 733-742(in Chinese with English abstract). http://www.researchgate.net/publication/286700352_Characteristics_of_fluid_inclusions_and_origin_of_Kaerqueka_copper_polymetallic_deposit_Qinghai_Province
      Tang, G.J., Wang Q., Zhao Z.H., et al., 2009. Geochronology and Geochemistry of the Ore-Bearing Porphyries in the Baogutu Area(Western Junggar): Petrogenesis and Their Implications for Tectonics and Cu-Au Mineralization. Earth Science—Journal of China University of Geosciences, 34(1): 56-74(in Chinese with English abstract). doi: 10.3799/dqkx.2009.007
      Thompson, R.N., 1982. Magmatism of the British Tertiary Volcanic Province. Scottish Journal of Geology, 18(1): 59-107. doi:10.1144/sjg180 10049
      Wang, S., Feng, C.Y., Bai, H.X., et al., 2009a. Mineral Assemblage Characteristics and Genesis of Kaerqueka Skarn Copper Deposit, Qimantage Mountain, Qinghai Province. Acta Mineralogica Sinica, (Suppl. ): 483-484(in Chinese). http://www.researchgate.net/publication/281258576_Mineral_Assemblage_Characteristics_and_Genesis_of_Kaerqueka_Skarn_Copper_Deposit_Qimantage_Mountain_Qinghai_Province
      Wang, S., Feng, C.Y., Li, S.J., et al., 2009b. Zircon SHRIMP U-Pb Dating of Granodiorite in the Kaerqueka Polymetallic Ore Deposit, Qimantage Mountain, Qinghai Province, and Its Geological Implications. Geology in China, 36(1): 74-84(in Chinese with English abstract). http://www.researchgate.net/publication/287462569_Zircon_SHRIMP_U-Pb_dating_of_granodiorite_in_the_kaerqueka_polymetallic_ore_deposit_qimantage_mountain_qinghai_province_and_its_geological_implications
      Wang, X.H., Hou, Z.Q., Song, Y.C., et al., 2012. Baiyangping Pb-Zn-Cu-Ag Polymetallic Deposit in Lanping Basin: A Discussion on Characteristics and Source of Ore-Forming Fluids and Source of Metallogenic Materials. Earth Science—Journal of China University of Geosciences, 37(5): 1015-1028(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201205016.htm
      Wu, K.X., Hu, R.Z., Bi, X.W., et al., 2002. Ore Lead Isotopes as a Tracer for Ore-Forming Material Sources: A Review. Geology-Geochemistry, 30(3): 73-81(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ200203012.htm
      Xu, G.D., 2010. Geological and Geochemical Studies on Typical Deposits of Qimantage Metallogenic Belt in Qinghai Province(Dissertation). Kunming University of Science and Technology, Kunming, 126-128 (in Chinese with English abstract).
      Xu, W.X., 1995. Isotope Geochemistry Researches of Tin Deposit of China. Mineral Resources and Geology, 45(1): 1-11(in Chinese).
      Yan, Y.T., Zhang, N., Li, S.R., et al., 2014. Mineral Chemistry and Isotope Geochemistry of Pyrite from the Heilangou Gold Deposit, Jiaodong Peninsula, Eastern China. Geoscience Frontiers, 5(2): 205-213. doi: 10.1016/j.gsf.2013.05.003
      Yang, Y., Luo, T.Y., Huang, Z.L., et al., 2010. Sulfur and Lead Compositions of the Narusongdou Silver Zinc-Lead Deposit in Tibet: Implications for the Sources of Plutons and Metals in the Deposit. Acta Mineralogica Sinica, 30(3): 311-318(in Chinese with English abstract).
      Zartman, R.E., Doe, B.R., 1981. Plumbotectonics—The Model. Tectonophysics, 75(1-2): 135-162. doi: 10.1016/0040-1951(81)90213-4
      Zhang, J.Y., Ma, C.Q., Wang, R.J., et al., 2013. Mineralogical, Geochronological and Geochemical Characteristics of Zhoukoudian Intrusion and Their Magmatic Source and Evolution. Earth Science—Journal of China University of Geosciences, 38(1): 68-86(in Chinese with English abstract). doi: 10.3799/dqkx.2013.007
      Zhao, Z.H., 1997. Principles of Trace Element Geochemistry. Science Press, Beijing, 183-204 (in Chinese).
      Zhou, Z.J., Chen, Y.J., Jiang, S.Y., et al., 2014. Geology, Geochemistry and Ore Genesis of the Wenyu Gold Deposit, Xiaoqinling Gold Field, Qinling Orogen, Southern Margin of North China Craton. Ore Geology Reviews, 59: 1-20. doi: 10.1016/j.oregeorev.2013.12.001
      Zhu, B.Q., Li, X.H., Dai, T.M., 1998. Isotope System Theory and Application to the Earth Sciences—On Crust-Mantle Evolution of Continent of China. Science Press, Beijing, 216-230(in Chinese).
      丁清峰, 2004. 东昆仑造山带区域成矿作用与矿产资源评价(博士学位论文). 长春: 吉林大学, 25-28.
      丁清峰, 孙丰月, 李钟山, 2007. 青海东昆仑成矿带综合选区研究. 中国地质, 34(6): 1101-1108. doi: 10.3969/j.issn.1000-3657.2007.06.016
      丰成友, 李东生, 屈文俊, 等, 2009. 青海祁漫塔格索拉吉尔矽卡岩型铜钼矿床辉钼矿铼-锇同位素定年及其地质意义. 岩矿测试, 28(3): 223-227. doi: 10.3969/j.issn.0254-5357.2009.03.006
      何书跃, 祁兰英, 舒树兰, 等, 2008. 青海祁漫塔格地区斑岩铜矿的成矿条件和远景. 地质与勘探, 44(2): 14-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200802004.htm
      姜春发, 王宗起, 李锦轶, 2000. 中央造山带开合构造. 北京: 地质出版社, 150-154.
      郎兴海, 唐菊兴, 陈毓川, 等, 2012. 西藏冈底斯成矿带南缘新特提斯洋俯冲期成矿作用: 来自雄村矿集区Ⅰ号矿体的Re-Os同位素年龄证据. 地球科学——中国地质大学学报, 37(3): 515-525. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201203015.htm
      李碧乐, 孙丰月, 于晓飞, 等, 2010. 青海东昆仑卡尔却卡地区野拉塞铜矿床成因类型及成矿机制. 岩石学报, 26(12): 3796-3708. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201012022.htm
      李东生, 张占玉, 苏生顺, 等, 2010. 青海卡尔却卡铜钼矿床地质特征及成因探讨. 西北地质, 43(4): 239-244. doi: 10.3969/j.issn.1009-6248.2010.04.028
      李龙, 郑永飞, 周建波, 2001. 中国大陆地壳铅同位素演化的动力学模型. 岩石学报, 17(1): 61-68. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200101007.htm
      李世金, 孙丰月, 王力, 等, 2008. 青海东昆仑卡尔却卡多金属矿区斑岩型铜矿的流体包裹体研究. 矿床地质, 27(3): 399-407. doi: 10.3969/j.issn.0258-7106.2008.03.010
      李闫华, 鄢云飞, 谭俊, 等, 2007. 稀土元素在矿床学研究中的应用. 地质找矿论丛, 22(4): 294-298. doi: 10.3969/j.issn.1001-1412.2007.04.010
      刘彬, 马昌前, 郭盼, 等, 2013. 东昆仑中泥盆世A型花岗岩的确定及其构造意义. 地球科学——中国地质大学学报, 38(5): 947-962. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201305005.htm
      路远发, 2004. GeoKit: 一个用VBA构建的地球化学工具软件包. 地球化学, 33(5): 459-464. doi: 10.3321/j.issn:0379-1726.2004.05.004
      戚长谋, 邹祖荣, 李鹤年, 1994. 地球化学通论. 北京: 地质出版社, 167-180.
      沈能平, 彭建堂, 袁顺达, 2008. 湖北徐家山锑矿床铅同位素组成与成矿物质来源探讨. 矿物学报, 28(2): 169-176. doi: 10.3321/j.issn:1000-4734.2008.02.009
      宋文彬, 2012. 青海省卡尔却卡铜多金属矿床特征及成因分析(硕士学位论文). 长沙: 中南大学, 23-26.
      宋文彬, 赖健清, 黄敏, 等, 2012. 青海省卡尔却卡铜多金属矿床流体包裹体特征及成矿流体. 中国有色金属学报, 22(3): 733-742. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201203015.htm
      唐功建, 王强, 赵振华, 等, 2009. 西准噶尔包古图成矿斑岩年代学与地球化学: 岩石成因与构造、铜金成矿意义. 地球科学——中国地质大学学报, 34(1): 56-74. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200901008.htm
      王松, 丰成友, 柏红喜, 等, 2009a. 青海祁漫塔格地区卡尔却卡矽卡岩型铜多金属矿床矿物组合特征及成因. 矿物学报, (增刊1): 483-484. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2009S1252.htm
      王松, 丰成友, 李世金, 等, 2009b. 青海祁漫塔格卡尔却卡铜多金属矿区花岗闪长岩锆石SHRIMP U-Pb测年及其地质意义. 中国地质, 36(1): 74-84. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200901008.htm
      王晓虎, 侯增谦, 宋玉财, 等, 2012. 兰坪盆地白秧坪铅锌铜银多金属矿床成矿流体及成矿物质来源. 地球科学——中国地质大学学报, 37(5): 1015-1028. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201205016.htm
      吴开兴, 胡瑞忠, 毕献武, 等, 2002. 矿石铅同位素示踪成矿物质来源综述. 地质地球化学, 30(3): 73-81. doi: 10.3969/j.issn.1672-9250.2002.03.013
      徐国端, 2010. 青海祁漫塔格多金属成矿带典型矿床地质地球化学研究(博士学位论文). 昆明: 昆明理工大学, 126-128.
      徐文忻, 1995. 我国锡矿床的同位素地球化学研究. 矿产与地质, 45(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD501.000.htm
      杨勇, 罗泰义, 黄智龙, 等, 2010. 西藏纳如松多银铅矿S、Pb同位素组成: 对成矿物质来源的指示. 矿物学报, 30(3): 311-318. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201003007.htm
      张金阳, 马昌前, 王人镜, 等, 2013. 周口店岩体矿物学、年代学、地球化学特征及其岩浆起源与演化. 地球科学——中国地质大学学报, 38(1): 68-86. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201301011.htm
      赵振华, 1997. 微量元素地球化学原理. 北京: 地质出版社, 183-204.
      朱炳泉, 李献华, 戴橦谟, 1998. 地球科学中同位素体系理论与应用——兼论中国大陆地壳演化. 北京: 科学出版社, 216-230.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)  / Tables(4)

      Article views (3401) PDF downloads(399) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return