• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 40 Issue 1
    Jan.  2015
    Turn off MathJax
    Article Contents
    Zhao Shaoqing, Fu Lebing, Wei Junhao, Tan Jun, Wang Xuchun, Zhao Zhixin, Li Xiang, 2015. Petrogenesis and Geodynamic Setting of Late Triassic Quartz Diorites in Zhiduo Area, Qinghai Province. Earth Science, 40(1): 61-76. doi: 10.3799/dqkx.2015.005
    Citation: Zhao Shaoqing, Fu Lebing, Wei Junhao, Tan Jun, Wang Xuchun, Zhao Zhixin, Li Xiang, 2015. Petrogenesis and Geodynamic Setting of Late Triassic Quartz Diorites in Zhiduo Area, Qinghai Province. Earth Science, 40(1): 61-76. doi: 10.3799/dqkx.2015.005

    Petrogenesis and Geodynamic Setting of Late Triassic Quartz Diorites in Zhiduo Area, Qinghai Province

    doi: 10.3799/dqkx.2015.005
    • Received Date: 2014-05-01
    • Publish Date: 2015-01-15
    • Zircon U-Pb age, major and trace elements and Sr, Nd isotope compositions of the Riariqu quartz diorites from the south of the Ganzi-Litang suture zone, northeastern Qiangtang terrane are studied to decipher its petrogenesis and geodynamic significance. LA-ICP-MS zircon U-Pb dating yields an emplacement age of 218±1 Ma for the intrusion. Bulk-rock analyses show that these rocks belong to the calc-alkaline series, with SiO2 contents ranging from 53.02% to 62.06%. They are enriched in Al2O3 (15.84%-17.00%) and CaO (6.71%-8.94%), depleted in TiO2 (0.49%-1.01%) and P2O5 (0.04%-0.12%), defining their metaluminous characteristics. All samples have high concentrations of MgO (3.31%-5.66%), Cr (33.45×10-6-176.64×10-6) and Ni (13.34×10-6-43.62×10-6), and resultant high Mg# (50-62). These rocks are enriched in LREE and LILE, and depleted in HFSE with low REE contents (38.05×10-6-61.58×10-6). The (87Sr/86Sr)i ratios range from 0.706 8 to 0.707 9, and εNd(t) values vary from -5.5 to -1.6. The geochemical and Sr-Nd isotopic compositions of the Riariqu quartz diorites are similar to those of high-Mg dioritoids/sanukitoids. We contend that the Riariqu quartz diorites were derived from low-degree partial melting (10%-15%) of a phlogopite-bearing spinel lherzolite mantle, which was metasomatized by sediment-derived melts. Fractional crystallization of pyroxene and amphibole might also occur during the magma evolution. The geochemical characteristics indicate that the Riariqu quartz diorites are arc-related magmatic rocks, and were generated in a subduction-related tectonic setting. Combined with the ophiolites and continental marginal arc lavas in the study area, and the regional adakites in the Yidun terrane, it is suggested that the Riariqu quartz diorites might be generated during the southwestward subduction of Ganzi-Litang Paleo-Tethys Ocean in the Late Triassic.

       

    • loading
    • Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X
      Chen, J.L., Xu, J.F., Ren, J.B., et al., 2013. Geochronology and Geochemical Characteristics of Late Triassic Porphyritic Rocks from the Zhongdian Arc, Eastern Tibet, and Their Tectonic and Metallogenic Implications. Gondwana Research, 26(2): 492-504. doi: 10.1016/j.gr.2013.07.022
      Chung, S.L., Chu, M.F., Zhang, Y.Q., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism. Earth-Science Reviews, 68(3-4): 173-196. doi: 10.1016/j.earscirev.2004.05.001
      Condie, K.C., 2005. High Field Strength Element Ratios in Archean Basalts: A Window to Evolving Sources of Mantle Plumes? Lithos, 79(3-4): 491-504. doi: 10.1016/j.lithos.2004.09.014
      Crawford, A.J., Falloon, T.J., Green, D.H., et al., 1989. Classification Petrogenesis and Tectonic Setting of Boninites. Academic Division of Unwin Hyaman Ltd., London.
      Deng, J.F., Liu, C., Feng, Y.F., et al., 2010. High Magnesian Andesitic/Dioritic Rocks (HMA) and Magnesian Andesitic/Dioritic Rocks (MA): Two Igneous Rock Types Related to Oceanic Subduction. Geology in China, 37(4): 1112-1118 (in Chinese with English abstract). http://www.cqvip.com/main/zcps.aspx?c=1&id=35237930
      Elburg, M.A., van Bergen, M., Hoogewerff, J., et al., 2002. Geochemical Trends across an Arc-Continent Collision Zone: Magma Sources and Slab-Wedge Transfer Processes below the Pantar Strait Volcanoes, Indonesia. Geochimica et Cosmochimica Acta, 66(15): 2771-2789. doi: 10.1016/S0016-7037(02)00868-2
      Furman, T., Graham, D., 1999. Erosion of Lithospheric Mantle beneath the East African Rift System: Geochemical Evidence from the Kivu Volcanic Province. Lithos, 48(1-4): 237-262. doi: 10.1016/S0419-0254(99)80014-7
      Fu, X.G., Wang, J., Tan, F.W., et al., 2010. The Late Triassic Rift-Related Volcanic Rocks from Eastern Qiangtang, Northern Tibet (China): Age and Tectonic Implications. Gondwana Research, 17(1): 135-144. doi: 10.1016/j.gr.2009.04.010
      Gao, S., Rudnick, R.L., Yuan, H.L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432: 892-897. doi: 10.1038/nature03162
      Griffin, W.L., Belousova, E.A., Shee, S.R., et al., 2004. Archean Crustal Evolution in the Northern Yilgarn Craton: U-Pb and Hf-Isotope Evidence from Detrital Zircons. Precambrian Research, 131(3-4): 231-282. doi: 10.1016/j.precamres.2003.12.011
      Hawkesworth, C.J., Turner, S.P., Mcdermott, F., et al., 1997. U-Th Isotopes in Arc Magmas: Implications for Element Transfer from the Subducted Crust. Science, 276(5312): 551-555. doi: 10.1126/science.276.5312.551
      Hoskin, P.W.O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. doi: 10.2113/0530027
      Hou, Z.Q., Qu, X.M., Zhou, J.R., et al., 2001. Collision-Orogenic Processes of the Yidun Arc in the Sanjiang Region: Record of Granites. Acta Geologica Sinica, 75(4): 484-497 (in Chinese with English abstract). http://www.cqvip.com/qk/95080x/20014/5639608.html
      Hou, Z.Q., Yang, Y.Q., Qu, X.M., et al., 2004. Tectonic Evolution and Mineralization Systems of the Yidun Arc Orogen in Sanjiang Region, China. Acta Geologica Sinica, 78(1): 109-120 (in Chinese with English abstract). http://www.researchgate.net/publication/281547368_Tectonic_evolution_and_mineralization_systems_of_the_Yidun_Arc_Orogen_in_Sanjiang_Region_China
      Jian, P., Liu, D.Y., Kröner, A., et al., 2009a. Devonian to Permian Plate Tectonic Cycle of the Paleo-Tethys Orogen in Southwest China (I): Geochemistry of Ophiolites, Arc/Back-Arc Assemblages and Within-Plate Igneous Rocks. Lithos, 113(3-4): 748-766. doi: 10.1016/j.lithos.2009.04.004
      Jian, P., Liu, D.Y., Kröner, A., et al., 2009b. Devonian to Permian Plate Tectonic Cycle of the Paleo-Tethys Orogen in Southwest China (II): Insights from Zircon Ages of Ophiolites, Arc/Back-Arc Assemblages and Within-Plate Igneous Rocks and Generation of the Emeishan CFB Province. Lithos, 113(3-4): 767-784. doi: 10.1016/j.lithos.2009.04.006
      Kamei, A., Owada, M., Nagao, T., et al., 2004. High-Mg Diorites Derived from Sanukitic HMA Magmas, Kyushu Island, Southwest Japan Arc: Evidence from Clinopyroxene and Whole Rock Compositions. Lithos, 75(3-4): 359-371. doi: 10.1016/j.lithos.2004.03.006
      Kapp, P., Yin, A., Manning, C.E., et al., 2000. Blueschist-Bearing Metamorphic Core Complexes in the Qiangtang Block Reveal Deep Crustal Structure of Northern Tibet. Geology, 28: 19-22. doi:10.1130/0091-7613(2000)28<19:BMCCIT>2.0.CO;2
      Kapp, P., Yin, A., Manning, C.E., et al., 2003. Tectonic Evolution of the Early Mesozoic Blueschist-Bearing Qiangtang Metamorphic Belt, Central Tibet. Tectonics, 22(4): 1043. doi: 10.1029/2002TC001361
      Kelemen, P.B., 1995. Genesis of High Mg# Andesites and the Continental Crust. Contributions to Mineralogy and Petrology, 120(1): 1-19. doi: 10.1007/BF00311004
      Kelemen, P.B., Hanghøj, K., Greene, A.R., 2003. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. Treatise on Geochemistry, 3: 593-659. doi: 10.1016/B0-08-043751-6/03035-8
      Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. doi: 10.1093/petrology/egp082
      Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008a. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004
      Liu, Y.S., Zong, K.Q., Kelemen, P.B., et al., 2008b. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1-2): 133-153. doi: 10.1016/j.chemgeo.2008.08.004
      Ludwig, K.R., 2003. User's Manual for Isoplot 3.0—A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley.
      Luo, W.X., Qian, L.L., Li, D.W., et al., 2013. Petrogenesis of the Zhongzaohuo Ultramafic Pyroxenite Pluton, East Kunlun: Constraints from Petrology, Geochemistry and Genetic Mineralogy. Earth Science—Journal of China University of Geosciences, 38(6): 1214-1228 (in Chinese with English abstract). doi: 10.3799/dqkx.2013.119
      Ma, L.Y., Niu, Z.J., Bai, Y.S., et al., 2007. Sr, Nd and Pb Isotopic Geochemistry of Permian Volcanic Rocks from Southern Qinghai and Their Geological Significance. Earth Science—Journal of China University of Geosciences, 32(1): 22-28 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200701002.htm
      Maniar, P.D., Piccoli, P.M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. doi:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
      Mao, J.W., Pirajno, F., Zhang, Z.H., et al., 2006. Late Variscan Post-Collisional Cu-Ni Sulfide Deposits in East Tianshan and Altay in China: Principal Characteristics and Possible Relationship with Mantle Plume. Acta Geologica Sinica, 80(7): 925-942 (in Chinese with English abstract). http://www.researchgate.net/publication/285865027_Late_Variscan_post-collisional_Cu-Ni_sulfide_deposits_in_East_Tianshan_and_Altay_in_China_Principal_characteristics_and_possible_relationship_with_mantle_plume
      McCarron, J.J., Smellie, J.L., 1998. Tectonic Implications of Fore-Arc Magmatism and Generation of High-Magnesian Andesites: Alexander Island, Antarctica. Journal of the Geological Society, 155(2): 269-280. doi: 10.1144/gsjgs.155.2.0269
      Miller, C., Schuster, R., Klotzli, U., et al., 1999. Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis. Journal of Petrology, 40(9): 1399-1424. doi: 10.1093/petrology/40.9.1399
      Mo, X.X., Deng, J.F., Dong, F.L., et al., 2001. Volcanic Petrotectonic Assemblages in Sanjiang Orogenic Belt, SW China and Implications for Tectonics. Geological Journal of China Universities, 7(2): 121-138 (in Chinese with English abstract). http://www.researchgate.net/publication/285844189_Volcanic_petrotectonic_assemblages_in_Sanjiang_orogenic_belt_SW_China_and_implication_for_tectonics
      Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3-14. doi: 10.1016/j.jseaes.2011.12.018
      Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. doi: 10.1093/petrology/25.4.956
      Pearce, J.A., Peate, D.W., 1995. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences, 23: 251-286. doi: 10.1146/annurev.ea.23.050195.001343
      Peng, T.P., Zhao, G.C., Fan, W.M., et al., 2014. Zircon Geochronology and Hf Isotopes of Mesozoic Intrusive Rocks from the Yidun Terrane, Eastern Tibetan Plateau: Petrogenesis and Their Bearings with Cu Mineralization. Journal of Asian Earth Sciences, 80: 18-33. doi: 10.1016/j.jseaes.2013.10.028
      Plank, T., 2005. Constraints from Thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents. Journal of Petrology, 46(5): 921-944. doi: 10.1093/petrology/egi005
      Plank, T., Langmuir, C.H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145(3-4): 325-394. doi: 10.1016/S0009-2541(97)00150-2
      Polat, A., Kerrich, R., 2001. Magnesian Andesites, Nb-Enriched Basalt-Andesites, and Adakites from Late-Archean 2.7 Ga Wawa Greenstone Belts, Superior Province, Canada: Implications for Late Archean Subduction Zone Petrogenetic Processes. Contributions to Mineralogy and Petrology, 141(1): 36-52. doi: 10.1007/s004100000223
      Pullen, A., Kapp, P., Gehrels, G.E., et al., 2008. Triassic Continental Subduction in Central Tibet and Mediterranean-Style Closure of the Paleo-Tethys Ocean. Geology, 36(5): 351-354. doi: 10.1130/G24435A.1
      Rapp, R.P., Shimizu, N., Norman, M.D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. doi: 10.1016/S0009-2541(99)00106-0
      Rollinson, H.R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Group UK Ltd., New York.
      Shimoda, G., Tatsumi, Y., Nohda, S., et al., 1998. Setouchi High-Mg Andesites Revisited: Geochemical Evidence for Melting of Subducting Sediments. Earth and Planetary Science Letters, 160(3-4): 479-492. doi: 10.1016/S0012-821X(98)00105-8
      Shirey, S.B., Hanson, G.N., 1984. Mantle-Derived Archaean Monozodiorites and Trachyandesites. Nature, 310: 222-224. doi: 10.1038/310222a0
      Smithies, R.H., Champion, D.C., 1999. Late Archaean Felsic Alkaline Igneous Rocks in the Eastern Goldfields, Yilgarn Craton, Western Australia: A Result of Lower Crustal Delamination? Journal of the Geological Society, 156(3): 561-576. doi: 10.1144/gsjgs.156.3.0561
      Smithies, R.H., Champion, D.C., 2000. The Archaean High-Mg Diorite Suite: Links to Tonalite-Trondhjemite-Granodiorite Magmatism and Implications for Early Archaean Crustal Growth. Journal of Petrology, 41(12): 1653-1671. doi: 10.1093/petrology/41.12.1653
      Smithies, R.H., van Kranendonk, M.J., Champion, D.C., 2007. The Mesoarchean Emergence of Modern-Style Subduction. Gondwana Research, 11(1-2): 50-68. doi: 10.1016/j.gr.2006.02.001
      Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalt: Implications for Mantle Composition and Processes. In: Saunders, A.D., Norry, M.J., eds., Magmatism in the Ocean Basins. Geological Society Special Publications, London, 42: 313-345.
      Tatsumi, Y., 1995. Subduction Zone Magmatism. Blackwell Publishing House, Boston.
      Tatsumi, Y., 2001. Geochemical Modeling of Partial Melting of Subducting Sediments and Subsequent Melt-Mantle Interaction: Generation of High-Mg Andesites in the Setouchi Volcanic Belt, Southwest Japan. Geology, 29(4): 323-326. doi:10.1130/0091-7613(2001)029<0323:GMOPMO>2.0.CO;2
      Tatsumi, Y., Hanyu, T., 2003. Geochemical Modeling of Dehydration and Partial Melting of Subducting Lithosphere: Toward a Comprehensive Understanding of High-Mg Andesite Formation in the Setouchi Volcanic Belt, SW Japan. Geochemistry, Geophysics, Geosystems, 4(9): 1081. doi: 10.1029/2003GC000530
      Tatsumi, Y., Ishizaka, K., 1981. Existence of Andesitic Primary Magma: An Example from Southwest Japan. Earth and Planetary Science Letters, 53(1): 124-130. doi: 10.1016/0012-821X(81)90033-9
      Tatsumi, Y., Ishizaka, K., 1982. Origin of High-Magnesian Andesites in the Setouchi Volcanic Belt, Southwest Japan, I. Petrographical and Chemical Characteristics. Earth and Planetary Science Letters, 60(2): 293-304. doi: 10.1016/0012-821X(82)90008-5
      Tatsumi, Y., Shukuno, H., Sato, K., et al., 2003. The Petrology and Geochemistry of High-Magnesium Andesites at the Western Tip of the Setouchi Volcanic Belt, SW Japan. Journal of Petrology, 44(9): 1561-1578. doi: 10.1093/petrology/egg049
      Wang, B.Q., Zhou, M.F., Chen, W.T., et al., 2013. Petrogenesis and Tectonic Implications of the Triassic Volcanic Rocks in the Northern Yidun Terrane, Eastern Tibet. Lithos, 175-176: 285-301. doi: 10.1016/j.lithos.2013.05.013
      Wang, B.Q., Zhou, M.F., Li, J.W., et al., 2011a. Late Triassic Porphyritic Intrusions and Associated Volcanic Rocks from the Shangri-La Region, Yidun Terrane, Eastern Tibetan Plateau: Adakitic Magmatism and Porphyry Copper Mineralization. Lithos, 127(1-2): 24-38. doi: 10.1016/j.lithos.2011.07.028
      Wang, Q., Li, Z.X., Chung, S.L., et al., 2011b. Late Triassic High-Mg Andesite/Dacite Suites from Northern Hohxil, North Tibet: Geochronology, Geochemical Characteristics, Petrogenetic Processes and Tectonic Implications. Lithos, 126(1-2): 54-67. doi: 10.1016/j.lithos.2011.06.002
      Wang, Q., Wyman, D.A., Xu, J.F., et al., 2008. Triassic Nb-Enriched Basalts, Magnesian Andesites, and Adakites of the Qiangtang Terrane (Central Tibet): Evidence for Metasomatism by Slab-Derived Melts in the Mantle Wedge. Contributions to Mineralogy and Petrology, 155(4): 473-490. doi: 10.1007/s00410-007-0253-1
      Wang, Q., Zhao, Z.H., Xu, J.F., et al., 2006. Carboniferous Adakite-High-Mg Andesite-Nb-Enriched Basaltic Rocks Suites in the Northern Tianshan Area: Implications for Phanerozoic Crustal Growth in the Central Asia Orogenic Belt and Cu-Au Mineralization. Acta Petrologica Sinica, 22(1): 11-30 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200601002.htm
      Wilson, M., 1989. Igneous Petrogenesis. Unwim Hyman, London.
      Woodhead, J.D., Hergt, J.M., Davidson, J.P., et al., 2001. Hafnium Isotope Evidence for 'Conservative' Element Mobility during Subduction Zone Processes. Earth and Planetary Science Letters, 192(3): 331-346. doi: 10.1016/S0012-821X(01)00453-8
      Xu, Z.Q., Yang, J.S., Li, W.C., et al., 2013. Paleo-Tethys System and Accretionary Orogen in the Tibet Plateau. Acta Petrologica Sinica, 29(6): 1847-1860 (in Chinese with English abstract). http://www.cqvip.com/QK/94579X/20136/46670152.html
      Yan, Q.R., Wang, Z.Q., Liu, S.W., et al., 2005. The Tethys Expansion and the Gondwana Cleavage in West-Northern Sanjiang: The SHRIMP Chronological Evidence from Ganzi Ophiolite Gabbro. Chinese Science Bulletin, 50(2): 158-166 (in Chinese). doi: 10.1360/csb2005-50-2-158
      Yi, L.W., Ma, C.Q., Wang, L.X., et al., 2014. Discovery of Late Ordovician Subvolcanic Rocks in South China: Existence of Subduction-Related Dacite from Early Paleozoic? Earth Science—Journal of China University of Geosciences, 39(6): 637-653 (in Chinese with English abstract). doi: 10.3799/dqkx.2014.061
      Yin, A., Harrison, T.M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review Earth and Planetary Science Letters, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211
      Yin, J.Y., Yuan, C., Sun, M., et al., 2012. Age, Geochemical Features and Possible Petrogenesis Mechanism of Early Permian Diorite in Hatu, Xinjiang. Acta Petrologica Sinica, 28(7): 2171-2182 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSXB201207019.htm
      Yogodzinski, G.M., Key, R.W., Volynets, O.N., et al., 1995. Magnesian Andesite in the Western Aleutian Komandorsky Region: Implications for Slab Melting and Processes in the Mantle Wedge. Geological Society of America Bulletin, 107(5): 505-519. doi:10.1130/0016-7606(1995)107<0505:MAITWA>2.3.CO;2
      Yogodzinski, G.M., Volynets, O.N., Koloskov, A.V., et al., 1994. Magnesian Andesites and the Subduction Component in a Strongly Calcalkaline Series at Piip Volcano, Far Western Aleutians. Journal of Petrology, 35(1): 163-204. doi: 10.1093/petrology/35.1.163
      Zhai, Q.G., Jahn, B.M., Su, L., et al., 2013. Triassic Arc Magmatism in the Qiangtang Area, Northern Tibet: Zircon U-Pb Ages, Geochemical and Sr-Nd-Hf Isotopic Characteristics, and Tectonic Implications. Journal of Asian Earth Sciences, 63(1): 162-178. doi: 10.1016/j.jseaes.2012.08.025
      Zhai, Q.G., Jahn, B.M., Zhang, R.Y., et al., 2011. Triassic Subduction of the Paleo-Tethys in Northern Tibet, China: Evidence from the Geochemical and Isotopic Characteristics of Eclogites and Blueschists of the Qiangtang Block. Journal of Asian Earth Sciences, 42(6): 1356-1370. doi: 10.1016/j.jseaes.2011.07.023
      Zhang, Q., Qian, Q., Zhai, M.G., et al., 2005. Geochemistry, Petrogenesis and Geodynamic Implications of Sanukite. Acta Petrologica et Mineralogica, 24(2): 117-125 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200502004.htm
      Zhang, Q., Wang, Y., Qian, Q., et al., 2004. Sanukite of Late Archaean and Early Earth Evolution. Acta Petrologica Sinica, 20(6): 1355-1362 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200406004.htm
      Zhang, Z.M., Dong, X., Santosh, M., et al., 2014. Metamorphism and Tectonic Evolution of the Lhasa Terrane, Central Tibet. Gondwana Research, 25(1): 170-189. doi: 10.1016/j.gr.2012.08.024
      Zhao, Z.H., Wang, Q., Xiong, X.L., et al., 2007. Magnesian Igneous Rocks in Northern Xinjiang. Acta Petrologica Sinica, 23(7): 1696-1707 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200707014.htm
      Zheng, Y.C., Hou, Z.Q., Gong, Y.L., et al., 2014. Petrogenesis of Cretaceous Adakite-Like Intrusions of the Gangdese Plutonic Belt, Southern Tibet: Implications for Mid-Ocean Ridge Subduction and Crustal Growth. Lithos, 190-191: 240-263. doi: 10.1016/j.lithos.2013.12.013
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454. doi: 10.1016/j.gr.2012.02.002
      Zi, J.W., Cawood, P.A., Fan, W.M., et al., 2012. Contrasting Rift and Subduction-Related Plagiogranites in the Jinshajiang Ophiolitic Melange, Southwest China, and Implications for the Paleo-Tethys. Tectonics, 31: 1-18. doi: 10.1029/2011TC002937
      邓晋福, 刘翠, 冯艳芳, 等, 2010. 高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA): 与洋俯冲作用相关的两类典型的火成岩类. 中国地质, 37(4): 1112-1118. doi: 10.3969/j.issn.1000-3657.2010.04.025
      侯增谦, 曲晓明, 周继荣, 等, 2001. 三江地区义敦岛弧碰撞造山过程: 花岗岩记录. 地质学报, 75(4): 484-497. doi: 10.3321/j.issn:0001-5717.2001.04.008
      侯增谦, 杨岳清, 曲晓明, 等, 2004. 三江地区义敦岛弧造山带演化和成矿系统. 地质学报, 78(1): 109-120. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200401013.htm
      罗文行, 钱莉莉, 李德威, 等, 2013. 东昆仑中灶火地区超镁铁质辉石岩的成因. 地球科学——中国地质大学学报, 38(6): 1214-1228. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201306006.htm
      马丽艳, 牛志军, 白云山, 等, 2007. 青海南部二叠纪火山岩Sr、Nd、Pb同位素特征及地质意义. 地球科学——中国地质大学学报, 32(1): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200701002.htm
      毛景文, Pirajno, F., 张作衡, 等, 2006. 天山-阿尔泰东部地区海西晚期后碰撞铜镍硫化物矿床: 主要特点及可能与地幔柱的关系. 地质学报, 80(7): 925-942. doi: 10.3321/j.issn:0001-5717.2006.07.001
      莫宣学, 邓晋福, 董方浏, 等, 2001. 西南三江造山带火山岩-构造组合及其意义. 高校地质学报, 7(2): 121-138. doi: 10.3969/j.issn.1006-7493.2001.02.001
      王强, 赵振华, 许继峰, 等, 2006. 天山北部石炭纪埃达克岩-高镁安山岩-富Nb岛弧玄武质岩: 对中亚造山带显生宙地壳增生与铜金成矿的意义. 岩石学报, 22(1): 11-30. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200601002.htm
      许志琴, 杨经绥, 李文昌, 等, 2013. 青藏高原中的古特提斯体制与增生造山作用. 岩石学报, 29(6): 1847-1860. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306002.htm
      闫全人, 王宗起, 刘树文, 等, 2005. 西南三江特提斯洋扩张与晚古生代东冈瓦纳裂解: 来自甘孜蛇绿岩辉长岩的SHRIMP年代学证据. 科学通报, 50(2): 158-166. doi: 10.3321/j.issn:0023-074X.2005.02.010
      易立文, 马昌前, 王连训, 等, 2014. 华南晚奥陶世次火山岩的发现: 早古生代与俯冲有关的英安岩? 地球科学——中国地质大学学报, 39(6): 637-653. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201406001.htm
      尹继元, 袁超, 孙敏, 等, 2012. 新疆哈图早二叠世富镁闪长岩的时代、地球化学特征和可能的成因机制. 岩石学报, 28(7): 2171-2182. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201207019.htm
      张旗, 钱青, 翟明国, 等, 2005. Sanukite(赞岐岩) 的地球化学特征、成因及其地球动力学意义. 岩石矿物学杂志, 24(2): 117-125. doi: 10.3969/j.issn.1000-6524.2005.02.005
      张旗, 王焰, 钱青, 等, 2004. 晚太古代Sanukite(赞岐岩)与地球早期演化. 岩石学报, 20(6): 1355-1362. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200406004.htm
      赵振华, 王强, 熊小林, 等, 2007. 新疆北部的富镁火成岩. 岩石学报, 23(7): 1696-1707. doi: 10.3969/j.issn.1000-0569.2007.07.015
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(4)

      Article views (4453) PDF downloads(535) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return