• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 40 Issue 5
    May  2015
    Turn off MathJax
    Article Contents
    Zheng Lunju, Guan Defan, Guo Xiaowen, Ma Zhongliang, 2015. Key Geological Conditions Affecting Pyrolysis Experiments of Marine Source Rocks for Hydrocarbon Generation. Earth Science, 40(5): 909-917. doi: 10.3799/dqkx.2015.075
    Citation: Zheng Lunju, Guan Defan, Guo Xiaowen, Ma Zhongliang, 2015. Key Geological Conditions Affecting Pyrolysis Experiments of Marine Source Rocks for Hydrocarbon Generation. Earth Science, 40(5): 909-917. doi: 10.3799/dqkx.2015.075

    Key Geological Conditions Affecting Pyrolysis Experiments of Marine Source Rocks for Hydrocarbon Generation

    doi: 10.3799/dqkx.2015.075
    • Received Date: 2014-10-10
    • Publish Date: 2015-05-15
    • Hydrocarbon generation simulation experiment (pyrolysis) is important for studying petroleum generation mechanisms and quantitatively estimating hydrocarbon generation potential of source rocks. The simulation experiment results not only depend on the temperature, pressure and duration, but also on the pore fluid, source rock compaction. In this paper, marine black mudstone with low maturity from the Permian Dalong Formation (P2d) is used for hydrocarbon generation simulations with two types of high-pressure liquid water and low-pressure water steam. The results show that the high-pressure liquid water can increase the organic matter petroleum generation potential greatly, enhancing oil generation and retarding the transformation from oil to gas, suggesting important influence of geological factors such as high-pressure liquid water, fluid pressure and pore space on the hydrocarbon generation of the source rocks. The increase of the petroleum generation potential is due to the fact that the physicochemistry reaction of the kerogen is greatly enhanced at the presence of the near-critical properties water. It is concluded that the water in the pore space of the source rocks is of the high-pressure and low-temperature liquid water in the subsurface temperature (100-200 ℃) and pressure (30-120 MPa) conditions, which has the properties of near-critical water. Therefore, the hydrocarbon generation simulation experiment (pyrolysis) with high-pressure liquid water is more close to the actual geological conditions than that of the low pressure water steam and could be used to estimate hydrocarbon generation potential of source rock more effectively.

       

    • loading
    • Carr, A.D., Snape, C.E., Meredith, W., et al., 2009. The Effect of Water Pressure on Hydrocarbon Generation Reactions: Some Inferences from Laboratory Experiments. Petroleum Geoscience, 15(1): 17-26. doi: 10.1144/1354-079309-797
      Chen, J.Y., Liu, G.Y., Jin, L.J., 2009. Water in the Earth's Interior and Abiotic Formation of Hydrocarbon. Earth Science Frontiers, 16(1): 33-40 (in Chinese with English abstract).
      Chen, J.Y., Zhang, H., Zheng, H.F., et al., 2006. In Situ Visualization of Pyrolysis of Organic Matter in High-Temperature and High-Pressure Water—Taking Kerogen and Asphalt as an Example. Petroleum Geology & Experiment, 28(1): 73-77 (in Chinese with English abstract).
      Gao, G., 2000. Method of Petroleum-Generating Simulation and Its Petroleum Geological Significance. Natural Gas Geoscience, 11(2): 25-29 (in Chinese with English abstract).
      Gao, G., Gang, W.Z., Hao, S.S., 1995. An Approach to the Genesis of Carbon Dioxide from the Thermal Hydrolysis Modelling Experiment of Carbonate Source Rocks. Experimental Petroleum Geology, 17(3): 210-213 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD502.013.htm
      Helgeson, H.C., Knox, A.M., Owens, C.E., et al., 1993. Petroleum, Oil Field Waters, and Authigenic Mineral Assemblages are They in Metastable Equilibrium in Hydrocarbon Reservoirs. Geochimica et Cosmochimica Acta, 57(14): 3295-3339. doi: 10.1016/0016-7037(93)90541-4
      Jiang, F., Zhang, Y.L., Du, J.G., 1996. Advance of Pyrolysis Experimentation on Hydrocarbon Genesis. Advance in Earth Sciences, 11(5): 453-459 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ605.004.htm
      Lewan, M.D., Winters, J.C., McDonald, J.H., 1979. Generation of Oil-Like Pyrolyzates from Organic-Rich Shales. Science, 203(4383): 897-899. doi: 10.1126/science.203.4383.897
      Lewan, M.D., 1997. Experiments on the Role of Water in Petroleum Formation. Geochimica et Cosmochimica Acta, 61(17): 3691-3723. doi: 10.1016/S0016-7037(97)00176-2
      Lewan, M.D., 1998. Sulphur-Radical Control on Petroleum Formation Rates. Nature, 391(6663): 164-166. doi: 10.1038/34391
      Liu, W.H., Wang, W.C., 2000. The Organic (Biogenic) and Inorganic (Non-Biogenic) Sources of Hydrocarbons—Thought on Theory of Oil and Gas Formation. Bulletin of Mineralogy, Petrology and Geochemistry, 19(3): 179-186 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200003008.htm
      Qin, J.Z., Liu, J.W., Liu, B.Q., et al., 2002. Hydrocarbon Yield and Geochemical Parameters Affected by Heating Time and Added Water Amount in the Simulation Test. Petroleum Geology & Experiment, 24(2): 152-157 (in Chinese with English abstract).
      Seewald, J.S., 2003. Organic-Inorganic Interactions in Petroleum-Producing Sedimentary Basins. Nature, 426(6964): 327-333. doi: 10.1038/nature02132
      Tissot, B.P., Welte, D.H., 1978. Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration. Springer-Verlag, New York.
      Wang, X.F., Liu, W.H., Xu, Y.C., et al., 2006. The Thermal Simulation Experiment of Water in the Organic Matter in the Formation of Gaseous Hydrocarbon Evolution. Progress in Natural Science, 16(10): 1275-1281 (in Chinese).
      Wang, X.X., Wang, G.L., Cai, J.G., et al., 2006. Organic-Clay Complex and Hydrocarbon Generation. Petroleum Industry Press, Beijing, 126-134 (in Chinese).
      Zheng, L.J., Qin, J.Z., He, S., et al., 2009. Preliminary Study of Formation Porosity Thermocompression Simulation Experiment of Hydrocarbon Generation and Expulsion. Petroleum Geology & Experiment, 31(3): 296-302, 306 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200903019.htm
      Zhou, S.X., Zou, H.L., Xie, Q.L., et al., 2006. Organic-Inorganic Interactions during the Formation of Oils in Sedimentary Basin. Natural Gas Geoscience, 17(1): 42-47 (in Chinese with English abstract).
      陈晋阳, 刘桂洋, 金鹿江, 2009. 地球内部水与无机成烃. 地学前缘, 16(1): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200901011.htm
      陈晋阳, 张红, 郑海飞, 等, 2006. 高温高压下水中有机质降解过程的原位观测——以干酪根和沥青质为例. 石油实验地质, 28(1): 73-77. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200601013.htm
      高岗, 2000. 油气生成模拟方法及其石油地质意义. 天然气地球科学, 11(2): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200002004.htm
      高岗, 刚文哲, 郝石生, 1995. 碳酸盐烃源岩加水热模拟实验中二氧化碳成因探讨. 石油地质实验, 17(3): 210-213. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD502.013.htm
      姜峰, 张友联, 杜建国, 1996. 油气生产热模拟实验研究进展. 地球科学进展, 11(5): 453-459. doi: 10.3321/j.issn:1001-8166.1996.05.005
      刘文汇, 王万春, 2000. 烃类的有机(生物)与无机(非生物)来源——油气成因理论思考之二. 矿物岩石地球化学通报, 19(3): 179-186. doi: 10.3969/j.issn.1007-2802.2000.03.007
      秦建中, 刘井旺, 刘宝泉, 等, 2002. 加温时间、加水量对模拟实验油气产率及地化参数的影响. 石油实验地质, 24(2): 152-157. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200202011.htm
      王晓峰, 刘文汇, 徐永昌, 等, 2006. 水在有机质形成气态烃演化中作用的热模拟实验研究. 自然科学进展, 16(10): 1275-1281. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200610011.htm
      王行信, 王国力, 蔡进攻, 等, 2006. 有机粘土复合体与油气生成. 北京: 石油工业出版社, 126-134.
      郑伦举, 秦建中, 何生, 等, 2009. 地层孔隙热压生排烃模拟实验初步研究. 石油实验地质, 31(3): 296-302, 306. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200903019.htm
      周世新, 邹红亮, 解启来, 等, 2006. 沉积盆地油气形成过程中有机-无机相互作用. 天然气地球科学, 17(1): 42-47. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200601009.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(4)

      Article views (3799) PDF downloads(676) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return