Citation: | Xiang Lei, Cai Chunfang, He Xunyun, Jiang Lei, Yuan Yuyang, Wang Tiankai, Jia Lianqi, 2015. Ocean Redox State Evolution and Its Controlling Factors during Cambrian Terreneuvian Epoch: Evidence from Lijiatuo Section, South China. Earth Science, 40(7): 1197-1214. doi: 10.3799/dqkx.2015.100 |
Algeo, T.J., Lyons, T.W., 2006. Mo-Total Organic Carbon Covariation in Modern Anoxic Marine Environments: Implications for Analysis of Paleoredox and Paleohydrographic Conditions. Paleoceanography, Palaeoclimatology, Palaeoecology, 21: 1-23. doi: 10.1029/2004PA001112
|
Algeo, T.J., Tribovillard, N., 2009. Environmental Analysis of Paleoceanographic Systems Based on Molybdenum-Uranium Covariation. Chemical Geology, 268: 211-225. doi: 10.1016/j.chemgeo.2009.09.001
|
Algeo, T.J., Henderson, C.M., Tong, J.N., et al., 2013. Plankton and Productivity during the Permian-Triassic Boundary Crisis: An Analysis of Organic Carbon Fluxes. Global and Planetary Change, 105: 52-67. doi: 10.1016/j.gloplacha.2012.02.008
|
Anbar, A.D., Knoll, A.H., 2002. Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge. Science, 297: 1137-1142. doi: 10.1126/science.1069651
|
Berner, R.A., Raiswell, R., 1984. C/S Method for Distinguishing Fresh Water from Marine Sedimentary Rocks. Geology, 12: 365-368. doi:10.1130/0091-7613(1984)12<365:CMFDFF>2.0.CO;2
|
Berner, R.A., 2009. Phanerozoic Atmospheric Oxygen: New Results Using the Geocarbsulf Model. American Journal of Science, 309: 603-606. doi: 10.2475/07.2009.03
|
Canfield, D.E., Poulton, S.W., Knoll, A.H., et al., 2008. Ferruginous Conditions Dominated Later Neoproterozoic Deep Water Chemistry. Science, 321: 949-952. doi: 10.1126/science.1154499
|
Canfield, D.E., Raiswell, R., Westrich, J.T., et al., 1986. The Use of Chromium Reduction in the Analysis of Reduced Inorganic Sulfur in Sediments and Shales. Chemical Geology, 54: 149-155. doi: 10.1016/0009-2541(86)90078-1
|
Canfield, D.E., Teske, A., 1996. Late Proterozoic Rise in Atmospheric Oxygen Concentration Inferred from Phylogenetic and Sulphur Isotope Studies. Nature, 382: 127-132. doi: 10.1038/382127a0
|
Cao, C.Q., Love, G.D., Hays, L.E., et al., 2009. Biogeochemical Evidence for Euxinic Oceans and Ecological Disturbance Presaging the End-Permian Mass Extinction Event. Earth and Planetary Science Letters, 281: 188-201. doi: 10.1016/j.epsl.2009.02.012
|
Chang, H.J., Chu, X.L., Feng, L.J., et al., 2009. Terminal Ediacaran Anoxia in Deep Ocean: Trace Element Evidence from Cherts of the Liuchapo Formation, South China. Science in China (Series D), 52: 807-822. doi: 10.1007/s11430-009-0070-7
|
Chang, H.J., Chu, X.L., Feng, L.J., et al., 2009. Framboidal Pyrites in Cherts of the Laobao Formation, South China: Evidence for Anoxic Deep Ocean in the Terminal Ediacaran. Acta Petrologica Sinica, 25(4): 1001-1007(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/ysxb98200904024
|
Chang, H.J., Chu, X.L., Feng, L.J., et al., 2010. Iron Speciation in Cherts from the Laobao Formation. Chinese Science Bulletin, 55: 3189-3196. doi: 10.1007/s11434-010-4006-6
|
Chang, H.J., Chu, X.L., Feng, L.J., et al., 2012. Progressive Oxidation of Anoxic and Ferruginous Deep Water during Deposition of the Terminal Ediacaran Laobao Formation in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 321: 80-87. doi: 10.1016/j.palaeo.2012.01.019
|
Chen, D.Z., Wang, J.G., Qing, H.R., et al., 2009. Hydrothermal Venting Activities in the Early Cambrian, South China: Petrological, Geochronological and Stable Isotopic Constraints. Chemical Geology, 258: 168-181. doi: 10.1016/j.chemgeo.2008.10.016
|
Cremonese, L., Shields-Zhou, G.A., Struck, U., et al., 2013. Marine Biogeochemical Cycling during the Early Cambrian Constrained by a Nitrogen and Organic Carbon Isotope Study of the Xiaotan Section, South China. Precambrian Research, 225: 148-165. doi: 10.1016/j.precamres.2011.12.004
|
Deng, Y.N., Guo, Q.J., Zhu, M.Y., et al., 2014. REE Geochemistry of Kerogen from Early Cambrian Black Rock Series in Western Hunan. Earth Science—Journal of China University of Geosciences, 39(3): 283-292. doi: 10.3799/dqkx.2014.027
|
Grice, K., Cao, C.Q., Love, G.D., et al., 2005. Photic Zone Euxinia during the Permian-Triassic Superanoxic Event. Science, 307: 706-709. doi: 10.1126/science.1104323
|
Galimov, E.M., 2004. The Pattern of δ13Corg versus HI/OI Relation in Recent Sediments as an Indicator of Geochemical Regime in Marine Basins: Comparison of the Black Sea, Kara Sea, and Cariaco Trench. Chemical Geology, 204: 287-301. doi: 10.1016/j.chemgeo.2003.11.014
|
Goldberg, T., Strauss, H., Guo, Q.J., et al., 2007. Reconstructing Marine Redox Conditions for the Early Cambrian Yangtze Platform: Evidence from Biogenic Sulphur and Organic Carbon Isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 254: 175-193. doi: 10.1016/j.palaeo.2007.03.015
|
Gong, C., Hollander, D. J, . 1997. Differential Contribution of Bacteria to Sedimentary Organic Matter in Oxic and Anoxic Environments, Santa Monica Basin, California. Organic Geochemistry, 26: 545-563. doi: 10.1016/S0146-6380(97)00018-1
|
Guo, Q.J., Shields, G.A., Liu, C.Q., et al., 2007a. Trace Element Chemostratigraphy of Two Ediacaran-Cambrian Successions in South China: Implications for Organosedimentary Metal Enrichment and Silicification in the Early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 254: 194-216. doi: 10.1016/j.palaeo.2007.03.016
|
Guo, Q.J., Strauss, H., Liu, C.Q., et al., 2007b. Carbon Isotopic Evolution of the Terminal Neoproterozoic and Early Cambrian: Evidence from the Yangtze Platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254: 140-157. doi: 10.1016/j.palaeo.2007.03.014
|
Guo, Q.J., Strauss, H., Zhu, M.Y., et al., 2013. High Resolution Organic Carbon Isotope Stratigraphy from a Slope to Basinal Setting on the Yangtze Platform, South China: Implications for the Ediacaran-Cambrian Transition. Precambrian Research, 225: 209-217. doi: 10.1016/j.precamres.2011.10.003
|
Ishikawa, T., Ueno, Y., Komiya, T., et al., 2008. Carbon Isotope Chemostratigraphy of a Precambrian/Cambrian Boundary Section in the Three Gorges Area, South China: Prominent Global Scale Isotope Excursions just before the Cambrian Explosion. Gondwana Research, 14: 193-208. doi: 10.1016/j.gr.2007.10.008
|
Jiang, G.Q., Wang, X.Q., Shi, X.Y., et al., 2012. The Origin of Decoupled Carbonate and Organic Carbon Isotope Signatures in the Early Cambrian (ca. 542-520Ma) Yangtze Platform. Earth and Planetary Science Letters, 317-318: 96-110. doi: 10.1016/j.epsl.2011.11.018
|
Jiang, S.Y., Pi, D.H., Heubeck, C., et al., 2009. Early Cambrian Ocean Anoxia in South China. Nature, 459: E5-E6. doi: 10.1038/nature08048
|
Johnston, D.T., Poulton, S.W., Dehler, C., et al., 2010. An Emerging Picture of Neoproterozoic Ocean Chemistry, Insights from the Chuar Group, Grand Canyon, USA. Earth and Planetary Science Letters, 290: 64-73. doi: 10.1016/j.epsl.2009.11.059
|
Kouchinsky, A., Bengtson, S., Runnegar, B., et al., 2012. Chronology of Early Cambrian Biomineralization. Geological Magazine, 149: 221-251. doi: 10.1017/S0016756811000720
|
Kimura, H., Watanabe, Y., 2001. Oceanic Anoxia at the Precambrian-Cambrian Boundary. Geology, 29: 995-998. doi:10.1130/0091-7613(2001)029<0995:OAATPC>2.0.CO;2
|
Kump, L.R., Junium, C., Arthur, M.A., et al., 2011. Isotopic Evidence for Massive Oxidation of Organic Matter Following the Great Oxidation Event. Science, 334: 1694-1696. doi: 10.1126/science.1213999
|
Lehmann, M.F., Bernasconi, S.M., Barbieri, A., et al., 2002. Preservation of Organic Matter and Alteration of Its Carbon and Nitrogen Isotope Composition during Simulated and In-Situ Early Sedimentary Diagenesis. Geochimica et Cosmochimica Acta, 66: 3573-3584. doi: 10.1016/S0016-7037(02)00968-7
|
Li, C., Love, G.D., Lyons, T.W., et al., 2010. A Stratified Redox Model for the Ediacaran Ocean. Science, 328: 80-83. doi: 10.1126/science.1182369
|
Li, D., Ling, H.F., Jiang, S.Y., et al., 2009. New Carbon Isotope Stratigraphy of the Ediacaran-Cambrian Boundary Interval from SW China: Implications for Global Correlation. Geological Magazine, 146: 465-484. doi: 10.1017/S0016756809006268
|
Li, D., Ling, H.F., Shields-Zhou, G.A., et al., 2013. Carbon and Strontium Isotope Evolution of Seawater across the Ediacaran-Cambrian Transition: Evidence from the Xiaotan Section, NE Yunnan, South China. Precambrian Research, 225: 128-147. doi: 10.1016/j.precamres.2012.01.002
|
Li, G.X., Steiner, M., Zhu, X., et al., 2007. Early Cambrian Metazoan Fossil Record of South China: Generic Diversity and Radiation Patterns. Palaeogeography, Palaeoclimatology, Palaeoecology, 254: 229-249. doi: 10.1016/j.palaco.2007.03.017
|
Luo, H.L., Jiang, Z.W., Wu, X.C., 1984. Sinian-Cambrian Boundary Stratotype Section at Meishucun, Jinning, Yunnan, China. Yunnan People's Publishing House, Kunming(in Chinese).
|
März, C., Poulton, S.W., Beckmann, B., et al., 2008. Redox Sensitivity of P Cycling during Marine Black Shale Formation: Dynamics of Sulfidic and Anoxic, Non-Sulfidic Bottom Waters. Geochimica et Cosmochimica Acta, 72: 3703-3717. doi: 10.1016/j.gca.2008.04.025
|
Marshall, C.R., 2006. Explaining the Cambrian "Explosion" of Animals. Annual Review of Earth and Planetary Sciences, 34: 355-384. doi: 10.1146/annurev.earth.33.031504.103001
|
Morford, J.L., Martin, W.R., Carney, C.M., 2012. Rhenium Geochemical Cycling: Insights from Continental Margins. Chemical Geology, 324: 73-86. doi: 10.1016/j.chemgeo.2011.12.014
|
Muńoz, P., Dezileau, L., Lange, C., et al., 2012. Evaluation of Sediment Trace Metal Records as Paleoproductivity and Paleoxygenation Proxies in the Upwelling Center off Concepcion, Chile (36°S). Progress in Oceanography, 92-95: 66-80. doi: 10.1016/j.pocean.2011.07.010
|
Och, L., Shields-Zhou, G.A., Poulton, S.W., et al., 2013. Redox Changes in Early Cambrian Black Shales at Xiaotan Section, Yunnan Province, South China. Precambrian Research, 225: 166-189. doi: 10.1016/j.precamres.2011.10.005
|
Ogg, J.G., Ogg, G., Gradstein, F.M., 2008. The Concise Geologic Time Scale. Cambridge University Press, Cambridge, 177.
|
Pang, W.H., Ding, X.Z., Gao, L.Z., et al., 2011. Characteristics of Sequence Stratigraphy and Palaeoenvironmental Evolution of Lower Cambrian Strata in Hunan Province. Geology in China, 38(3): 560-576(in Chinese with English abstract). http://www.researchgate.net/publication/289077887_Characteristics_of_Sequence_Stratigraphy_and_Plaeoenvironmental_Evolution_of_Lower_Cambrian_strata_in_Hunan_Province
|
Peng, S.C., 2009. The Newly-Developed Cambrian Biostratigraphic Succession and Chronostratigraphic Scheme for South China. Chinese Science Bulletin, 54(18): 2691-2698(in Chinese). doi: 10.1007/s11434-009-0667-4
|
Peng, S.C., Babcock, L.E., 2011. Continuing Progress on Chronostratigraphic Subdivision of the Cambrian System. Bulletin Geoscience, 86: 391-396. doi: 10.3140/bull.geosci.1273
|
Pi, D.H., Liu, C.Q., Shields-Zhou, G.A., et al., 2013. Trace and Rare Earth Element Geochemistry of Black Shale and Kerogen in the Early Cambrian Niutitang Formation in Guizhou Province, South China: Constraints for Redox Environments and Origin of Metal Enrichments. Precambrian Research, 225: 218-229. doi: 10.1016/j.precamres.2011.07.004
|
Piper, D.Z., Calvert, S.E., 2009. A Marine Biogeochemical Perspective on Black Shale Deposition. Earth-Science Reviews, 95: 63-96. doi: 10.1016/j.earscirev.2009.03.001
|
Planavsky, N.J., Rouxel, O.J., Bekker, A.L., et al., 2010. The Evolution of the Marine Phosphate Reservoir. Nature, 467: 1088-1090. doi: 10.1038/nature09485
|
Planavsky, N.J., McGoldrick, P., Scott, C.T., et al., 2011. Widespread Iron-Rich Conditions in the Mid-Proterozoic Ocean. Nature, 477: 448-451. doi: 10.1038/nature10327
|
Qian, Y., Yin, G.Z., 1984. Small Shelly Fossils from the Lowest Cambrian in Guizhou. In: Hao, Y.C., ed., Stratigraphy and Palaeontology Proceedings. Geological Publishing House, Beijing, 91-123 (in Chinese).
|
Qian, Y., Zhu, M.Y., Li, G.X., et al., 2002. A Supplemental Precambrian-Cambrian Boundary Global Stratotype Section in SW China. Acta Palaeontologica Sinica, 41(1): 19-26(in Chinese with English abstract). http://europepmc.org/abstract/cba/368400
|
Raiswell, R., Berner, R.A., 1985. Pyrite Formation in Euxinic and Semi-Euxinic Sediments. American Journal of Science, 285: 710-724. doi: 10.2475/ajs.285.8.710
|
Riquier, L., Tribovillard, N., Averbuch, O., et al., 2006. The Late Frasnian Kellwasser Horizons of the Harz Mountains (Germany): Two Oxygen Deficient Periods Resulting from Different Mechanisms. Chemical Geology, 233: 137-155. doi: 10.1016/j.chemgeo.2006.02.021
|
Ross, D.J.K., Bustin, R.M., 2009. Investigating the Use of Sedimentary Geochemical Proxies for Paleoenvironment Interpretation of Thermally Mature Organic-Rich Strata: Examples from the Devonian-Mississippian Shales, Western Canadian Sedimentary Basin. Chemical Geology, 260: 1-19. doi: 10.1016/j.chemgeo.2008.10.027
|
Saltzman, M.R., 2005. Phosphorus, Nitrogen, and the Redox Evolution of the Paleozoic Oceans. Geology, 33: 573-576. doi: 10.1130/G21535.1
|
Sepúlveda, J., Wendler, J.E., Summons, R.E., et al., 2009. Rapid Resurgence of Marine Productivity after the Cretaceous-Paleogene Mass Extinction. Science, 326: 129-132. doi: 10.1126/science.1176233
|
Shen, S.Z., Crowley, J.L., Wang, Y., et al., 2011. Calibrating the End-Permian Mass Extinction. Science, 334: 1367-1372. doi: 10.1126/science.1213454
|
Shen, Y.A., Schidlowski, M., 2000. New C Isotope Stratigraphy from Southwest China, Implications for the Placement of the Precambrian-Cambrian Boundary on the Yangtze Platform and Global Correlations. Geology, 28: 623-626. doi:10.1130/0091-7613(2000)28<623:NCISFS>2.0.CO;2
|
Shu, D.G., 2009. Cambrian Explosion: Formation of Tree of Animals. Journal of Earth Sciences and Environment, 31(2): 111-134(in Chinese with English abstract).
|
Shu, D.G., Zhang, X.L., Han, J., et al., 2009. Restudy of Cambrian Explosion and Formation of Animal Tree. Acta Palaeontologica Sinica, 48(3): 414-427(in Chinese with English abstract). http://www.researchgate.net/publication/292288445_Restudy_of_Cambrian_explosion_and_formation_of_animal_tree
|
Sperling, E.A., Frieder, C.A., Raman, A.V., 2013. Oxygen, Ecology, and the Cambrian Radiation of Animals. Proceedings of the National Academy of Sciences of the United States of America, 110: 13446-13451. doi: 10.1073/pnas.1312778110
|
Steiner, M., Li, G.X., Qian, Y., et al., 2007. Neoproterozoic to Early Cambrian Small Shelly Fossil Assemblages and a Revised Biostratigraphic Correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 254: 67-99. doi: 10.1016/j.palaeo.2007.03.046
|
Steiner, M., Wallis, E., Erdtmann, B.D., et al., 2001. Submarine Hydrothermal Exhalative Ore Layers in Black Shales from South China and Associated Fossils Insights into a Lower Cambrian Facies and Bio-Evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 169: 165-191. doi: 10.1016/S0031-0182(01)00208-5
|
Strauss, H., 1997. The Isotopic Composition of Sedimentary Sulfur through Time. Palaeogeography, Palaeoclimatology, Palaeoecology, 132: 97-118. doi: 10.1016/S0031-0182(97)00067-9
|
Strauss, H., 1999. Geological Evolution from Isotope Proxy Signals—Sulfur. Chemical Geology, 161: 89-101. doi: 10.1016/S0009-2541(99)00082-0
|
Tribovillard, N., Algeo, T.J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232: 12-32. doi: 10.1016/j.chemgeo.2006.02.012
|
Wang, J.G., Chen, D.Z., Yan, D.T., et al., 2012a. Evolution from an Anoxic to Oxic Deep Ocean during the Ediacaran-Cambrian Transition and Implications for Bioradiation. Chemical Geology, 306: 129-138. doi: 10.1016/j.chemgeo.2012.03.005
|
Wang, X.Q., Shi, X.Y., Jiang, G.Q., et al., 2012b. New U-Pb Age from the Basal Niutitang Formation in South China: Implications for Diachronous Development and Condensation of Stratigraphic Units across the Yangtze Platform at the Ediacaran-Cambrian Transition. Journal of Asian Earth Sciences, 48: 1-8. doi: 10.1016/j.jseaes.2011.12.023
|
Wen, H.J., Carignan, J., Zhang, Y., et al., 2011. Molybdenum Isotopic Records across the Precambrian-Cambrian Boundary. Geology, 39: 775-778. doi: 10.1130/G32055.1
|
Wille, M., Nagler, T.F., Lehmann, B., et al., 2008. Hydrogen Sulphide Release to Surface Waters at the Precambrian/Cambrian Boundary. Nature, 453: 767-769. doi: 10.1038/nature07072
|
Xiang, L., Cai, C.F., He, X.Y., et al., 2012. The Mechanisms for the Enrichment of Trace Elements in the Lower Cambrian Black Chert Successions from Zhalagou Section, Guizhou Province. Acta Petrologica Sinica, 28(3): 971 -980 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201203026.htm
|
Xiang, L.W., Zhu, Z.L., 1999. Stratigrphy of China: Cambrian. Geological Publishing House, Beijing (in Chinese).
|
Xiong, Z.F., Li, T.G., Algeo, T., et al., 2012. Paleoproductivity and Paleoredox Conditions during Late Pleistocene Accumulation of Laminated Diatom Mats in the Tropical West Pacific. Chemical Geology, 334: 77-91. doi: 10.1016/j.chemgeo.2012.09.044
|
Yang, J., Xu, S.Q., 1997. The Second-Order Sequence Division and Sea Level Fluctuation in Cambrian on the Border of Sichuan, Guizhou and Hunan. Earth Science—Journal of China University of Geosciences, 22(5): 466-470. http://www.cnki.com.cn/Article/CJFDTotal-DQKX705.003.htm
|
Zachos, J.C., Rohl, U., Schellenberg, S.A., et al., 2005. Rapid Acidification of the Ocean during the Paleocene-Eocene Thermal Maximum. Science, 308: 1611-1615. doi: 10.1126/science.1109004
|
Zhang, T.G., Trela, W., Jiang, S.Y., et al., 2011. Major Oceanic Redox Condition Change Correlated with the Rebound of Marine Animal Diversity during the Late Ordovician. Geology, 39: 675-678. doi: 10.1130/G32020.1
|
Zhang, X.L., Shu, D.G., Han, J., et al., 2014. Triggers for the Cambrian Explosion: Hypotheses and Problems. Gondwana Research, 25: 896-909. doi: 10.1016/j.gr.2013.06.001
|
Zhou, C.M., Zhang, J.M., Li, G.X., et al., 1997. Carbon and Oxygen Isotopic Record of the Early Cambrian from the Xiaotan Section, Yunnan, South China. Scientia Geologica Sinica, 32(2): 201-211 (in Chinese with English abstract). http://www.researchgate.net/publication/308344843_Carbon_and_Oxygen_Isotopic_Record_of_the_Early_Cambrian_from_the_Xiaotan_Section_Yunnan_South_China
|
Zhu. M.Y., 2010. The Origin and Cambrian Explosion of Animals: Fossil Evidences from China. Acta Palaeontologica Sinica, 49(3): 269-287 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSWX201003000.htm
|
Zhu, M.Y., Zhang, J., Steiner, M., et al., 2003. Sinian and Early Cambrian Stratigraphic Frameworks from Shallow to Deep Water Facies of the Yangtze Platform, an Integrated Approach. Progress in Natural Science, 13(12): 951-960. doi: 10.1080/10020070312331344710
|
常华进, 储雪蕾, 冯连君, 等, 2009. 华南老堡组硅质岩中草莓状黄铁矿-埃迪卡拉纪末期深海缺氧的证据. 岩石学报, 25(4): 1001-1007. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200904024.htm
|
邓义楠, 郭庆军, 朱茂炎, 等, 2014. 湘西寒武纪早期黑色岩系中干酪根的稀土元素地球化学特征. 地球科学——中国地质大学学报, 39(3): 283-292. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201403004.htm
|
罗惠麟, 蒋志文, 武希彻, 1984. 中国云南晋宁梅树村震旦系-寒武系界线层型剖面. 昆明: 云南人民出版社.
|
庞维华, 丁孝忠, 高林志, 等, 2011. 湖南下寒武统层序地层特征与古环境演化变迁. 中国地质. 38(3): 560-576. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201103005.htm
|
彭善池, 2009. 华南新的寒武纪生物地层序列和年代地层系统. 科学通报, 54(18): 2691-2698. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200918010.htm
|
钱逸, 尹恭正, 1984. 贵州早寒武世早期小壳动物化石的研究. 见: 郝诒纯主编, 地层古生物论文集. 北京: 地质出版社, 91-123.
|
钱逸, 朱茂炎, 李国祥, 等, 2002. 华中西南区一条国际前寒武系与寒武系界线层型补充剖面. 古生物学报, 41(1): 19-26. doi: 10.3969/j.issn.0001-6616.2002.01.004
|
舒德干, 2009. 寒武纪大爆发与动物树的成型. 地球科学与环境学报, 31(2): 111-134. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX200902003.htm
|
舒德干, 张兴亮, 韩健, 等, 2009. 再论寒武纪大爆发与动物树成型. 古生物学报, 48(3): 414-427. doi: 10.3969/j.issn.0001-6616.2009.03.013
|
向雷, 蔡春芳, 贺训云, 等, 2012. 贵州渣拉沟剖面下寒武统黑色硅质岩微量元素富集机制. 岩石学报, 28(3): 971-980. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203026.htm
|
项礼文, 朱兆玲, 1999. 中国地层典-寒武系分册. 北京: 地质出版社.
|
杨家, 徐世球, 1997. 川黔湘交境寒武纪二级层序的划分及海平面变化. 地球科学——中国地质大学学报, 22(5): 466-470. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX705.003.htm
|
周传明, 张俊明, 李国祥, 等, 1997. 云南永善肖滩早寒武世早期碳氧同位素记录. 地质科学, 32(2): 201-211. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX702.008.htm
|
朱茂炎, 2010. 动物的起源和寒武纪大爆发: 来自中国的化石证据. 古生物学报, 49(3): 269-287. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX201003000.htm
|