• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 40 Issue 7
    Jul.  2015
    Turn off MathJax
    Article Contents
    Li Bo, Xue Wuqiang, Yan Jiaxin, Zhu Zongmin, Wang Yan, Ma Zhixin, 2015. Magnetic Properties of Middle-Late Permian Carbonates in South China and Their Environmental Significances. Earth Science, 40(7): 1226-1236. doi: 10.3799/dqkx.2015.102
    Citation: Li Bo, Xue Wuqiang, Yan Jiaxin, Zhu Zongmin, Wang Yan, Ma Zhixin, 2015. Magnetic Properties of Middle-Late Permian Carbonates in South China and Their Environmental Significances. Earth Science, 40(7): 1226-1236. doi: 10.3799/dqkx.2015.102

    Magnetic Properties of Middle-Late Permian Carbonates in South China and Their Environmental Significances

    doi: 10.3799/dqkx.2015.102
    • Received Date: 2014-11-21
    • Publish Date: 2015-07-15
    • As a reliable proxy for paleoclimate and paleoenvironment, magnetic parameter could provide valuable data for the research of global environmental changes and climatic processes. A detailed study has been carried out on rock magnetism in order to reveal the change of climate and environment and its reasons across Guadalupian-Lopingian (G-L) boundary at Tieqiao section in Laibin area, Guangxi, China. The results show that the dominant magnetic minerals from Tieqiao section are paramagnetic minerals with a small amount of magnetite and hematite as well. There is a remarkable change in the properties of rock magnetism near the G-L boundary. Magnetic susceptibility increases first and then decreases. Magnetic carriers show the trend of being transformed from hard magnetic minerals (hematite) to soft magnetic mineral (magnetite) and then turning to hard magnetic minerals (hematite). All of these changes occur within 4m-thick strata interval above and below the G-L boundary, and synchronize with the fluctuation of sea-level and ancient seawater temperature during late Middle Permian. The significant changes in magnetic parameters for Middle-Late Permian carbonates suggest that the migration and conversion of magnetic minerals between different spheres in earth system has shifted, which resulted from the climatic and environmental changes. High sea-level during Late Guadalupian and Early Lopingian resulted in the decrease in terrigenous supply in South China. Therefore, the magnetic carriers in Tieqiao section mainly are hematite through aeolian transportation during this period. However, pronounced regression during the Middle-Late Permian transition led to the expansion of exposed land area. Meanwhile, land plants experienced widespread extinction, which led to increased sediment source. The magnetic carriers in contemporaneous sediments of Tieqiao section are mainly fluvial magnetite.

       

    • loading
    • Ali, J.R., Thompson, G.M., Song, X.Y., et al., 2002. Emeishan Basalts (SW China) and the 'End-Guadalupian' Crisis: Magnetobiostratigraphic Constraints. Journal of the Geological Society, 159(1): 21-29. doi: 10.1144/0016-764901086
      Bond, D.P.G., Hilton, J., Wignall, P.B., et al., 2010a. The Middle Permian (Capitanian) Mass Extinction on Land and in the Oceans. Earth-Science Reviews, 102(1-2): 100-116. doi: 10.1016/j.earscirev.2010.07.004
      Bond, D.P.G., Wignall, P.B., Wang, W., et al., 2010b. The Mid-Capitanian (Middle Permian) Mass Extinction and Carbon Isotope Record of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 292(1-2): 282-294. doi: 10.1016/j.palaeo.2010.03.056
      Borradaile, G.J., 1988. Magnetic Susceptibility, Petrofabrics and Strain. Tectonophysics, 156(1-2): 1-20. doi: 10.1016/0040-1951(88)90279-X
      Chen, B., Joachimski, M.M., Sun, Y.D., et al., 2011. Carbon and Conodont Apatite Oxygen Isotope Records of Guadalupian-Lopingian Boundary Sections: Climatic or Sea-Level Signal? Palaeogeography, Palaeoclimatology, Palaeoecology, 311(3-4): 145-153. doi: 10.1016/j.palaeo.2011.08.016
      Chen, J.Y. Feng, Q.L., 2011. Rock-Magnetic Characteristics of the Permo-Triassic Boundary Section of Dongpan, Southwestern Guangxi, South China: Implications for Paleoclimate. Progress in Geophysics, 26(2): 529-539 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-2903.2011.02.018
      Chen, X., Zhang, W.G., Yu, L.Z., 2009. The Dependence of Magnetic Parameters on the Mixing Proportion of Hematite and Magnetite. Progress in Geophysics, 24(1): 82-88 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ200901008.htm
      Chen, Z.Q., George, A.D., Yang, W.R., 2009. Effects of Middle-Late Permian Sea-Level Changes and Mass Extinction on the Formation of the Tieqiao Skeletal Mound in the Laibin Area, South China. Australian Journal of Earth Sciences, 56(6): 745-763. doi: 10.1080/08120090903002581
      Crick, R.E., Ellwood, B.B., El Hassani, A., et al., 1997. Magnetosusceptibility Event and Cyclostratigraphy (MSEC) of the Eifelian-Givetian GSSP and Associated Boundary Sequences in North Africa and Europe. Episodes, 20(3): 167-175. doi: 10.18814/epiiugs/1997/v20i3/004
      Deng, C.L., Yuan, B.Y., Hu, S.Y., et al., 2000. Environmental Magnetism: A Review. Marine Geology & Quaternary Geology, 20(2): 93-101 (in Chinese with English abstract).
      Dunlop, D.J., Özdemir, Ö., 1997. Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press, Cambridge.
      Ellwood, B.B., Brett, C.E., MacDonald, W.D., 2007. Magnetostratigraphy Susceptibility of the Upper Ordovician Kope Formation, Northern Kentucky. Palaeogeography, Palaeoclimatology, Palaeoecology, 243(1-2): 42-54. doi: 10.1016/j.palaeo.2006.07.003
      Ellwood, B.B., Crick, R.E., El Hassani, A., et al., 2000. Magnetosusceptibility Event and Cyclostratigraphy Method Applied to Marine Rocks: Detrital Input versus Carbonate Productivity. Geology, 28(12): 1135-1138. doi:10.1130/0091-7613(2000)28<1135:MEACMA>2.0.CO;2
      Evans, M.E., Heller, F., 2003. Environmental Magnetism: Principles and Applications of Enviromagnetics. Academic Press, London.
      Fu, C.F., Song Y.G., Qiang X.K., et al., 2009. Environmental Magnetism and Its Application Progress in Paleoclimatic and Paleoenvironmental Changes. Journal of Earth Sciences and Environment, 31(3): 312-322 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX200903017.htm
      He, B., Xu, Y.G., Huang, X.L., et al., 2007. Age and Duration of the Emeishan Flood Volcanism, SW China: Geochemistry and SHRIMP Zircon U-Pb Dating of Silicic Ignimbrites, Post-Volcanic Xuanwei Formation and Clay Tuff at the Chaotian Section. Earth and Planetary Science Letters, 255(3-4): 306-323. doi: 10.1016/j.epsl.2006.12.021
      He, B., Xu, Y.G., Wang, Y.M., et al., 2005. Nature of Dongwu Movement and Its Temporal and Spatial Evolution. Earth Science—Journal of China University of Geosciences, 30(1): 89-96 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_dqkx200501012.aspx
      Hrouda, F., 1994. A Technique for the Measurement of Thermal Changes of Magnetic Susceptibility of Weakly Magnetic Rocks by the CS-2 Apparatus and KLY-2 Kappabridge. Geophysical Journal International, 118(3): 604-612. doi: 10.1111/j.1365-246X.1994.tb03987.x
      Itambi, A.C., von Dobeneck, T., Mulitza, S., et al., 2009. Millennial-Scale Northwest African Droughts Related to Heinrich Events and Dansgaard-Oeschger Cycles: Evidence in Marine Sediments from Offshore Senegal. Paleoceanography, 24: PA1205. doi: 10.1029/2007PA001570
      Jin, Y.G., Henderson, C.M., Wardlaw, B.R., et al., 2001. Proposal for the Global Stratotype Section and Point (GSSP) for the Guadalupian-Lopingian Boundary. Permophiles, 39: 32-42. http://www.researchgate.net/publication/285222479_Proposal_for_the_Global_Stratotype_Section_and_Point_GSSP_for_the_Guadalupian-Lopingian_boundary
      Jin, Y.G., Mei, S.L., Wang, W., et al., 1998. On the Lopingian Series of the Permian System. Palaeoworld, 9: 1-18. http://www.researchgate.net/publication/285492190_On_the_Lopingian_Series_of_the_Permian_System
      Jin, Y., Shen, S.Z., Henderson, C.M., et al., 2006. The Global Stratotype Section and Point (GSSP) for the Boundary between the Capitanian and Wuchiapingian Stage (Permian). Episodes, 29(4): 253-262. doi: 10.18814/epiiugs/2006/v29i4/003
      Kasuya, A., Isozaki, Y., Igo, H., 2012. Constraining Paleo-Latitude of a Biogeographic Boundary in Mid-Panthalassa: Fusuline Province Shift on the Late Guadalupian (Permian) Migrating Seamount. Gondwana Research, 21(2-3): 611-623. doi: 10.1016/j.gr.2011.06.001
      Liu, Q.S., Deng, C.L., 2009. Magnetic Susceptibility and Its Environmental Significances. Chinese Journal of Geophysics, 52(4): 1041-1048 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2009.04.021
      Liu, Q.S., Deng, C.L., Yu, Y., et al., 2005. Temperature Dependence of Magnetic Susceptibility in an Argon Environment: Implications for Pedogenesis of Chinese Loess/Palaeosols. Geophysical Journal International, 161(1): 102-112. doi: 10.1111/j.1365-246X.2005.02564.x
      Maher, B.A., 1988. Magnetic Properties of Some Synthetic Sub-Micron Magnetites. Geophysical Journal, 94(1): 83-96. doi: 10.1111/j.1365-246X.1988.tb03429.x
      Maher, B.A., 2011. The Magnetic Properties of Quaternary Aeolian Dusts and Sediments, and Their Palaeoclimatic Significance. Aeolian Research, 3(2): 87-144. doi: 10.1016/j.aeolia.2011.01.005
      Mei, S.L., Jin, Y.G., Wardlaw, B.R., 1998. Conodont Succession of the Guadalupian-Lopingian Boundary Strata in Laibin of Guangxi, China and West Texas, USA. Palaeoworld, 9: 53-57. http://www.researchgate.net/publication/284054146_Conodont_succession_of_the_Guadalupian-Lopingian_boundary_strata_in_Laibin_of_Guangxi_China_and_West_Texas_USA
      Meng, Q.Y., Li, A.C., 2008. Brief Reviews on Environment Magnetism in Marine Sediment. Marine Environmental Science, 27(1): 86-90(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYHJ200801023.htm
      Oldfield, F., 1991. Environmental Magnetism—A Personal Perspective. Quaternary Science Reviews, 10(1): 73-85. doi: 10.1016/0277-3791(91)90031-O
      Peck, J.A., King, J.W., Colman, S.M., et al., 1994. A Rock-Magnetic Record from Lake Baikal, Siberia: Evidence for Late Quaternary Climate Change. Earth and Planetary Science Letters, 122(1-2): 221-238. doi: 10.1016/0012-821X(94)90062-0
      Qiao, Q.Q., Zhang, C.X., Li. J., et al., 2011. Magnetic Properties and Indicator of Concentration of Pollution of Atmospheric Dust in Chaoyang, Beijing. Chinese Journal of Geophysics, 54(1): 151-162 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2011.01.016
      Qiu, Z., Wang, Q.C., 2010. Middle and Upper Permian Sedimentary Microfacies in the Tieqiao Section in Laibin, Guangxi, China. Acta Sedimentologica Sinica, 28(5): 1020-1036 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Conference_7450373.aspx
      Qiu, Z., Wang, Q.C., Zou, C.N., et al., 2014. Transgressive-Regressive Sequences on the Slope of an Isolated Carbonate Platform (Middle-Late Permian, Laibin, South China). Facies, 60(1): 327-345. doi: 10.1007/s10347-012-0359-4
      Racki, G., Racka, M., Matyja, H., et al., 2002. The Frasnian/Famennian Boundary Interval in the South Polish-Moravian Shelf Basins: Integrated Event-Stratigraphical Approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 181(1-3): 251-297. doi: 10.1016/S0031-0182(01)00481-3
      Sha, Q.A., Wu, W.S., Fu J.M., 1990. An Integrated Investigation on the Permian System of Qian-Gui Areas, with Discussion on the Hydrocarbon Potential. Science Press, Beijing (in Chinese with English abstract).
      Shen, S.Z., Wang, Y., Henderson, C.M., et al., 2007. Biostratigraphy and Lithofacies of the Permian System in the Laibin-Heshan Area of Guangxi, South China. Palaeoworld, 16(1-3): 120-139. doi: 10.1016/j.palwor.2007.05.005
      Sun, Y.D., Lai, X.L., Jiang, H.S., et al., 2008. Guadalupian (Middle Permian) Conodont Faunas at Shangsi Section, Northeast Sichuan Province. Journal of China University of Geosciences, 19(5): 451-460. doi: 10.1016/S1002-0705(08)60050-3
      Sun, Y.D., Lai, X.L., Wignall, P.B., et al., 2010. Dating the Onset and Nature of the Middle Permian Emeishan Large Igneous Province Eruptions in SW China Using Conodont Biostratigraphy and Its Bearing on Mantle Plume Uplift Models. Lithos, 119(1-2): 20-33. doi: 10.1016/j.lithos.2010.05.012
      Thompson, R., Oldfield, F., 1986. Environmental Magnetism. Allen & Unwin, London.
      Wang, H.P., Kent, D.V., Jackson, M.J., 2013. Evidence for Abundant Isolated Magnetic Nanoparticles at the Paleocene-Eocene Boundary. PNAS, 110(2): 425-430. doi: 10.7916/D84M92HF
      Wang, W., Cao, C.Q., Wang, Y., 2004. The Carbon Isotope Excursion on GSSP Candidate Section of Lopingian-Guadalupian Boundary. Earth and Planetary Science Letters, 220(1-2): 57-67. doi: 10.1016/S0012-821X(04)00033-0
      Wang, Y., Jin, Y.G., 2000. Permian Palaeogeographic Evolution of the Jiangnan Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 160(1-2): 35-44. doi: 10.1016/S0031-0182(00)00043-2
      Wignall, P.B., 2001. Large Igneous Provinces and Mass Extinctions. Earth-Science Reviews, 53(1-2): 1-33. doi: 10.1016/S0012-8252(00)00037-4
      Wignall, P.B., Bond, D.P.G., Haas, J., et al., 2012. Capitanian (Middle Permian) Mass Extinction and Recovery in Western Tethys: A Fossil, Facies, and δ13C Study from Hungary and Hydra Island (Greece). Palaios, 27(2): 78-89. doi: 10.2110/palo.2011.p11-058r
      Wignall, P.B., Sun, Y., Bond, D.P.G., et al., 2009a. Volcanism, Mass Extinction, and Carbon Isotope Fluctuations in the Middle Permian of China. Science, 324(5931): 1179-1182. doi: 10.1126/science.1171956
      Wignall, P.B., Védrine, S., Bond, D.P.G., et al., 2009b. Facies Analysis and Sea-Level Change at the Guadalupian-Lopingian Global Stratotype (Laibin, South China), and Its Bearing on the End-Guadalupian Mass Extinction. Journal of the Geological Society, 166(4): 655-666. doi: 10.1144/0016-76492008-118
      Yamazaki, T., 2009. Environmental Magnetism of Pleistocene Sediments in the North Pacific and Ontong-Java Plaeau: Temporal Variations of Detrital and Biogenic Components. Geochemistry, Geophysics, Geosystems, 10(7): Q07Z04. doi: 10.1029/2009GC002413
      Yao, Y., Yan, J.X., Li, A.Z., 2012. Sedimentary Features and Evolution of Mid-Permian Carbonates from Laibin of Guangxi. Earth Science—Journal of China University of Geosciences, 37(Suppl. 2): 184-194 (in Chinese with English abstract). doi: 10.3799/dqkx.2012.S2.019
      Zhang, S.H., Wang, X.L., Zhu, H., 1999. Magnetic Susceptibility Variations of Carbonates Controlled by Sea-Level Changes—Example in Devonian to Carboniferous Strata in Southern Guizhou Province, China. Science China (Ser. D), 29(6): 558-566 (in Chinese).
      Zheng, H.R., Hu, Z.Q., 2010. Chinese Pre-Mesozoic Tectonic: Atlas of Lithofacies and Paleogeography. Geological Publishing House, Beijing (in Chinese).
      Zheng, Y., Zhang, S.H., 2007. Magnetic Properties of Street Dust and Topsoil in Beijing and Its Environmental Implications. Chinese Science Bulletin, 52(20): 2399-2406 (in Chinese). doi: 10.1360/csb2007-52-20-2399
      Zhou, M.F., Malpas, J., Song, X.Y., et al., 2002. A Temporal Link between the Emeishan Large Igneous Province (SW China) and the End-Guadalupian Mass Extinction. Earth and Planetary Science Letters, 196(3-4): 113-122. doi: 10.1016/S0012-821X(01)00608-2
      Ziegler, A.M., Hulver, M.L., Rowley, D.B., 1997. Permian World Topography and Climate. In: Martini, I.P., ed., Late Glacial and Postglacial Environmental Changes—Quaternary, Carboniferous-Permian, and Proterozoic. Oxford University Press, New York, 111-146.
      陈建业, 冯庆来, 2011. 广西东攀二叠-三叠系界线剖面磁学特征及古气候意义. 地球物理学进展, 26(2): 529-539. doi: 10.3969/j.issn.1004-2903.2011.02.018
      陈曦, 张卫国, 俞立中, 2009. 赤铁矿与磁铁矿混合比例对磁性参数的影响. 地球物理学进展, 24(1): 82-88. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200901008.htm
      邓成龙, 袁宝印, 胡守云, 等, 2000. 环境磁学某些研究进展评述. 海洋地质与第四纪地质, 20(2): 93-101. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200002018.htm
      符超峰, 宋友桂, 强小科, 等, 2009. 环境磁学在古气候环境研究中的回顾与展望. 地球科学与环境学报, 31(3): 312-322. doi: 10.3969/j.issn.1672-6561.2009.03.017
      何斌, 徐义刚, 王雅玫, 等, 2005. 东吴运动性质的厘定及其时空演变规律. 地球科学——中国地质大学学报, 30(1): 89-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200501012.htm
      刘青松, 邓成龙, 2009. 磁化率及其环境意义. 地球物理学报, 52(4): 1041-1048. doi: 10.3969/j.issn.0001-5733.2009.04.021
      孟庆勇, 李安春, 2008. 海洋沉积物的环境磁学研究简述. 海洋环境科学, 27(1): 86-90. doi: 10.3969/j.issn.1007-6336.2008.01.023
      乔庆庆, 张春霞, 李静, 等, 2011. 北京市朝阳区大气降尘磁学特征及对空气污染物浓度的指示. 地球物理学报, 54(1): 151-162. doi: 10.3969/j.issn.0001-5733.2011.01.016
      邱振, 王清晨, 2010. 广西来宾铁桥剖面中上二叠统沉积微相. 沉积学报, 28(5): 1020-1036. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201005021.htm
      沙庆安, 吴望始, 傅家谟, 1990. 黔桂地区二叠系综合研究——兼论含油气性. 北京: 科学出版社.
      姚尧, 颜佳新, 李傲竹, 2012. 广西来宾中二叠世碳酸盐岩沉积特征与孤立台地演化. 地球科学——中国地质大学学报, 37(S2): 184-194. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX2012S2025.htm
      张世红, 王训练, 朱鸿, 1999. 碳酸盐岩磁化率与相对海平面变化的关系—黔南泥盆石炭系例析. 中国科学(D辑), 29(6): 558-566. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199906010.htm
      郑和荣, 胡宗全, 2010. 中国前中生代构造-岩相古地理图集. 北京: 地质出版社.
      郑妍, 张世红, 2007. 北京市区尘土与表土的磁学性质及其环境意义. 科学通报, 52(20): 2399-2406. doi: 10.3321/j.issn:0023-074x.2007.20.011
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)

      Article views (2690) PDF downloads(342) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return