• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 40 Issue 7
    Jul.  2015
    Turn off MathJax
    Article Contents
    Ding Fenghe, Han Xiaolei, Ha Yuanyuan, Dai Yong, Liang Yin, 2015. Relationship of Porosity and Volume Compression Coefficient of Solid Skeleton and Water in Artesian Well Aquifer. Earth Science, 40(7): 1248-1253. doi: 10.3799/dqkx.2015.104
    Citation: Ding Fenghe, Han Xiaolei, Ha Yuanyuan, Dai Yong, Liang Yin, 2015. Relationship of Porosity and Volume Compression Coefficient of Solid Skeleton and Water in Artesian Well Aquifer. Earth Science, 40(7): 1248-1253. doi: 10.3799/dqkx.2015.104

    Relationship of Porosity and Volume Compression Coefficient of Solid Skeleton and Water in Artesian Well Aquifer

    doi: 10.3799/dqkx.2015.104
    • Received Date: 2014-12-06
    • Publish Date: 2015-07-15
    • The study of porosity and rock compressibility etc has important application value in the evaluation of the elastic capacity and dynamic geological reserves of the reservoir. Water level digital data of 8 wells provided by the National Earthquake Precursor Network Center are studied to explore the relationship of porosity and volume compression coefficient between solid skeleton and water in artesian well aquifer medium under undrained condition. The results show that there exists a power function relation between the porosity and the solid skeleton volume compression coefficient and water volume compression coefficient in the aquifer. In the first quadrant, each well aquifer solid skeleton volume compression coefficient increases with increasing porosity, whereas the volume compression coefficient of water decreases with the increase of porosity, with one of two quadratic polynomial relationships between the solid skeleton and water volume compression coefficient in the aquifer. The volume compression coefficient of water in the aquifer is larger than that of the solid skeleton, and water is more easily compressed. In addition, the compression coefficient of limestone skeleton is relatively smaller than that of sandstone.

       

    • loading
    • Bredehoeft, J.D., 1967. Response of Well-Aquifer Systems to Earth Tides. Journal of Geophysical Research, 72(12): 3075-3087. doi: 10.1029/JZ072i012p03075
      Dou, H.E., 2010. The Justice of Rock Pore Compressibility: A Basis of Understanding Low Permeability Reservoirs. Special Oil and Gas Reservoirs, 17(5): 119-122(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TZCZ201005036.htm
      Erskine, A.D., 1991. The Effect of Tidal Fluctuation on a Coastal Aquifer in the UK. Groundwater, 29(4): 556-562. doi: 10.1111/j.1745-6584.1991.tb00547.x
      George, H.R., Edwin, S.R., 1979. Determination of Aquifer Parameters from Well Tides. Journal of Geophysical Research, 84(B11): 6071-6082. doi: 10.1029/JB084iB11p06071
      Hall, H.N., 1953. Compressibility of Reservoir Rocks. Journal of Petroleum Technology, 5(1): 17-19. doi: 10.2118/953309-G
      John, B., Keith, E.S., Mousa, D.S., 1991. Estimating Aquifer Parameters from Analysis of Forced Fluctuations in Well Level: An Example from the Nubian Formation near Aswan, Egypt 2 Poroelastic Properties. Journal of Geophysical Research, 96(B7): 12139-12160. doi: 10.1029/91JB00956
      Kamp, G., Gale, J.E., 1983. Theory of Earth Tide and Barometric Effects in Porous Formations with Compressible Grains. Water Resources Research, 19(2): 538-544. doi: 10.1029/WR019i002p00538
      Lai, G.J., Ge, H.K., Wang, W.L., 2013. Transfer Functions of the Well-Aquifer Systems Response to Atmospheric Loading and Earth Tide from Low to High-Frequency Band. Journal of Geophysical Research, 118(5): 1904-1924. doi: 10.1002/jgrb.50165
      Li, C.H., Chen, Y.H., Tian, Z.J., 1990. The Dynamic Response of Well-Aquifer System to Earth Tides and Its Influence Factors. Earthquake Research in China, 6(2): 37-45(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=ZGZD199002004&dbcode=CJFD&year=1990&dflag=pdfdown
      Li, C.L., 2003. The Relationship between Rock Compressibility and Porosity. China Offshore Oil and Gas(Geology), 17(5): 355-358(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD200305013.htm
      Li, C.L., 2005. Low Permeability Rocks are Less Sensitive to Stress. Oil Drilling & Production Technology, 27(4): 61-63(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7393.2005.04.027
      Luo, R.L., 2006. Queries to the Viewpoint-Low Permeability Reservoirs Have not the Characteristics of Strong Stress Sensitivity. Oil Drilling & Production Technology, 28(2): 78-80(in Chinese with English abstract). doi:10.3969/j.issn.1000-7393.2006.02.024
      Qin, T.L., Li, D., Chen, Y.Q., 1989. Practical Methods of Reservoir Engineering. Petroleum Industry Press, Beijing, 64 (in Chinese).
      Narasinmhan, T.N., Kanehiro, B.Y., Witherspon, P.A., 1984. Interpretation of Earth Tide Response of Three Deep, Confined Aquifers. Journal of Geophysical Research, 89(B3): 1913-1924. doi: 10.1029/JB089iB03p01913
      Rojstaczer, S., 1988. Determination of Fluid Flow Properties from the Response of Water Levels in Wells to Atmospheric Loading. Water Resources Research, 24(11): 1927-1938. doi: 10.1029/WR024i011p01927
      Tian, Z.J., Gu, Y.Z., 1985. Analysis and Processing of Data on Fluctuations of Groundwater Level. Seismology and Geology, 7(3): 51-59(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ198503008.htm
      Zhang, Z.D., 1986. High-Order Difference Method for Deep Well Water Level Pressure Coefficient. Journal of Seismology, (2): 74-78(in Chinese).
      Zhang, Z.D., Zheng, J.H., Feng, C.G., 1989. Quantitative Relationship between the Earth Tide Effect of Well Water Level, the Barometric Pressure Effect and the Parameters of Aquifers. Northwestern Seismological Journal, 11(3): 47-52(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=ZBDZ198903006&dbcode=CJFD&year=1989&dflag=pdfdown
      Zhang, Z.D., Zheng, J.H., Zhang, G.C., 1995. Response Functions of Well Aquifer System to Tide. Northwestern Seismological Journal, 17(3): 66-71(in Chinese with English abstract).
      窦宏恩, 2010. 正确对待岩石孔隙压缩系数是认识低渗透储层的基础——兼答《应科学看待低渗透储集层》一文作者. 特种油气藏, 17(5): 119-122. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201005036.htm
      李春洪, 陈益惠, 田竹君, 1990. 井-含水层系统对固体潮的动态响应及其影响因素. 中国地震, 6(2): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD199002004.htm
      李传亮, 2003. 岩石压缩系数与孔隙度的关系. 中国海上油气(地质), 17(5): 355-358. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200305013.htm
      李传亮, 2005. 低渗透储层不存在强应力敏感. 石油钻采工艺, 27(4): 61-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC200504019.htm
      罗瑞兰, 2006. "对低渗储层不存在强应力敏感"观点的质疑. 石油钻采工艺, 28(2): 78-80. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC200602027.htm
      秦同洛, 李璗, 陈元千, 1989. 实用油藏工程方法. 北京: 石油工业出版社, 64.
      田竹君, 谷园珠, 1985. 地下水微动态资料的分析与处理. 地震地质, 7(3): 51-59.
      张昭栋, 1986. 高阶差分法求深井水位的气压系数. 地震学刊, (2): 74-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK198602010.htm
      张昭栋, 郑金涵, 冯初刚, 1989. 井水位的固体潮效应和气压效应与含水层参数间的定量关系. 西北地震学报, 11(3): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ198903006.htm
      张昭栋, 郑金涵, 张广城, 1995. 水井含水层系统的潮汐响应函数. 西北地震学报, 17(3): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ503.009.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(3)

      Article views (3470) PDF downloads(433) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return