• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 40 Issue 8
    Aug.  2015
    Turn off MathJax
    Article Contents
    Wang Daming, Xiao Chenchao, Li Zhizhong, Ni Guoqiang, Wu Xiaojuan, Sui Zhengwei, 2015. Hyperspectral Remote Sensing Technology in Oil and Gas Exploration. Earth Science, 40(8): 1301-1309. doi: 10.3799/dqkx.2015.110
    Citation: Wang Daming, Xiao Chenchao, Li Zhizhong, Ni Guoqiang, Wu Xiaojuan, Sui Zhengwei, 2015. Hyperspectral Remote Sensing Technology in Oil and Gas Exploration. Earth Science, 40(8): 1301-1309. doi: 10.3799/dqkx.2015.110

    Hyperspectral Remote Sensing Technology in Oil and Gas Exploration

    doi: 10.3799/dqkx.2015.110
    • Received Date: 2015-09-15
    • Publish Date: 2015-08-01
    • Hyperspectral remote sensing technology is new in oil and gas exploration. Based on the theory of abnormal surface symbiosis with oil and gas microseepage, four typical classifications, maximum likelihood classification in the wavelet-based principal component analysis, endmember extraction, typical alteration classification with spectral libraries and decision tree classification based on vegetation indices are chosen to carry a case study of Hyperion images in Yulin, to obtain the related thematic maps such as clay, carbonate, vegetation and determine six comprehensive anomalous areas. A comprehensive analysis of the distribution of existing gas well and oil-gas anomalous areas show that the information extraction method of oil and gas microseepage is valid.

       

    • loading
    • Cloutis, E.A., 1996. Hyperspectral Geological Remote Sensing: Evaluation of Analytical Techniques. International Journal of Remote Sensing, 17(12): 2215-2242. doi: 10.1080/01431169608948770
      Everett, J.R., Staskowski, R.J., Jengo, C., 2002. Remote Sensing and GIS Enable Future Exploration Success. World Oil, 223(11): 59-65. http://search.ebscohost.com/login.aspx?direct=trueu0026db=buhu0026AN=8653515u0026site=ehost-live
      Gan, F.P., Wang, R.S., Ma, A.N., et al., 2003. Alteration Extracting Based on Spectral Match Filter(SMF). Journal of Image and Graphics, 8(2): 147-150(in Chinese with English abstract). doi: 10.11834/jig.20030261
      Goetz, A.F.H., 2009. Three Decades of Hyperspectral Remote Sensing of the Earth: A Personal View. Remote Sensing of Environment, 113(1): 5-16. doi: 10.1016/j.rse.2007.12.014
      Khan, S.D., Jacobson, S., 2008. Remote Sensing and Geochemistry for Detecting Hydrocarbon Microseepages. Geological Society of America Bulletin, 120(1-2): 96-105. doi: 10.1130/0016-7606(2008)120[96:rsagfd]2.0.co;2
      Li, Q.Q., Chen, X.M., Liu, X., et al., 2013. Quantitative Analysis of Content and Spectrum of Altered Mineral in the Oil and Gas Microseepage Area. Spectroscopy and Spectral Analysis, 33(12): 3318-3320 (in Chinese with English abstract). doi: 10.3964/j.issn.1000-0593(2013)12-3318-03
      Ni, G.Q., Shen, Y.T., Xu, D.Q., 2007. Wavelet-Based Principal Components Analysis Feature Extraction Method for Hyperion Images. Transactions of Beijing Institute of Technology, 27(7): 621-624 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-0645.2007.07.014
      Noomen, M.F., Skidmore, A.K., van der Meer, F., 2003. Detecting the Influence of Gas Seepage on Vegetation, Using Hyperspectral Remote Sensing. Proceedings of 3rd EARSeL Workshop on Imaging Spectroscopy, Herrsching, 252-256.
      Pan, C., Du, P.J., Luo, Y., et al., 2009. Decision Tree Classification of Remote Sensing Images Based on Vegetation Indices. Journal of Computer Applications, 29(3): 777-780 (in Chinese with English abstract). doi: 10.3724/SP.J.1087.2009.00777
      Schaepman, M.E., Ustin, S.L., Plaza, A.J., et al., 2009. Earth System Science Related Imaging Spectroscopy—An Assessment. Remote Sensing of Environment, (113): S123-S137. doi: 10.1016/j.rse.2009.03.001
      Tong, Q.X., Xue, Y.Q., Zhang, L.F., 2014. Progress in Hyperspectral Remote Sensing Science and Technology in China over the Past Three Decades. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(1): 70-91. doi: 10.1109/jstars.2013.2267204
      van der Meer, F.D., Harald, M.A., Hecker, C.A., et al., 2012. Multi- and Hyperspectral Geologic Remote Sensing: A Review. International Journal of Applied Earth Observation and Geoinformation, 14(1): 112-128. doi: 10.1016/j.jag.2011.08.002
      Wang, X.L., Du, P.J., Tan, K., et al., 2010. An Automatic Endmember Extraction Algorithm from Hyperspectral Image. Remote Sensing Information, (4): 8-12(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3177.2010.04.002
      Wang, Y., 2010. Hydrocarbon Microseepage Information Extracting through Remote Sensing Technology in Front Range of Longmenshan. Coal Geology of China, 22(10): 10-16 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGMT201010006.htm
      Yang, Y.J., Zhao, Y.J., 2011. The Hyperspectral Research Status at Home and Abroad in the Oil Exploration. Science Technology and Engineering, 11(6): 1290-1299 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-KXJS201106031.htm
      甘甫平, 王润生, 马蔼乃, 等, 2003. 基于光谱匹配滤波的蚀变信息提取. 中国图像图形学报, 8(2): 147-150. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200302004.htm
      李倩倩, 陈小梅, 刘幸, 等, 2013. 油气微渗漏区蚀变矿物含量与光谱之间的定量分析. 光谱学与光谱分析, 33(12): 3318-3320. doi: 10.3964/j.issn.1000-0593(2013)12-3318-03
      倪国强, 沈渊婷, 徐大琦, 2007. 一种基于小波PCA的高光谱图像特征提取新方法. 北京理工大学学报, 27(7): 621-624. doi: 10.3969/j.issn.1001-0645.2007.07.014
      潘琛, 杜培军, 罗艳, 等, 2009. 一种基于植被指数的遥感影像决策树分类方法. 计算机应用, 29(3): 777-780. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY200903044.htm
      王晓玲, 杜培军, 谭琨, 等, 2010. 一种高光谱遥感影像端元自动提取方法. 遥感信息, 4: 147-150. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXX201004004.htm
      王永, 2010. 基于遥感技术的龙门山前山带烃类微渗漏信息提取. 中国煤炭地质, 22(10): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201010006.htm
      杨燕杰, 赵英俊, 2011. 高光谱在油气勘探中的国内外研究现状. 科学技术与工程, 11(6): 1290-1299. doi: 10.3969/j.issn.1671-1815.2011.06.029
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)

      Article views (3717) PDF downloads(362) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return