• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 40 Issue 8
    Aug.  2015
    Turn off MathJax
    Article Contents
    Zhou Ping, Li Na, Huo Hongyuan, 2015. The Quality Assessment of Hymap Simulation Spaceborne Hyperspectral Data. Earth Science, 40(8): 1310-1318. doi: 10.3799/dqkx.2015.111
    Citation: Zhou Ping, Li Na, Huo Hongyuan, 2015. The Quality Assessment of Hymap Simulation Spaceborne Hyperspectral Data. Earth Science, 40(8): 1310-1318. doi: 10.3799/dqkx.2015.111

    The Quality Assessment of Hymap Simulation Spaceborne Hyperspectral Data

    doi: 10.3799/dqkx.2015.111
    • Received Date: 2015-04-12
    • Publish Date: 2015-08-01
    • In order to evaluate the hyperspectral satellite data quality effectively, rationally and objectively to facilitate mineral and energy exploration, we carried out an in-depth study, centering on the most representative load indexes (geometric spatial resolution, spectral resolution and signal-to-noise ratio). systematically and comprehensively analysing the image quality effect on different loading indicators and scale of analog spaceborne Hymap hyperspectral data by multi-angle research methods including mean squared error (MSE) abnormalities, abnormal histogram, data related abnormalities, abnormal reflectivity curve, the signal-noise ratio (SNR) parameter and the practical application of the analog data (alteration information extraction and mineral mapping). Results suggest that the three load index restrict each other. With the improvement of spatial resolution and spectral resolution, SNR will reduce. When the geometric space resolution is 15 m, spectral resolution is 15-20 nm, and SNR≥350, it can satisfy the requirement of the conventional mineral mapping.

       

    • loading
    • Chen, Q.L., Xue, Y.Q., 2000. Calculate the SNR of OMIS Imaging Spectrometer Data. Journal of Remote Sensing, 4(4): 284-289(in Chinese with English abstract). http://www.oalib.com/paper/1470304
      Cheng, P.Q., 2002. The Tutorial of Digital Signal Processing(Second Edition). Tsinghua University Press, Beijing(in Chinese).
      Clark, R.N., King, T.V.V., Klejwa, M., et al., 1990. High Spectral Resolution Reflectance Spectroscopy of Minerals. Journal of Geophysical Research, 95(B8): 12653-12680. doi: 10.1029/jb095ib08p12653
      Gao, B.C., 1993. An Operational Method for Estimating Signal to Noise Ratios from Data Acquired with Imaging Spectrometers. Remote Sensing of Environment, 43(1): 23-33. doi: 10.1016/0034-4257(93)90061-2
      Han, M.X., 2010. Remote Sensing Data Quality Evaluation Method. Association for Science and Technology, (3): 86-86(in Chinese).
      Jensen, J.R., 2007. Introduction to Digital Image Processing. Chen, X.L., Translated. Machinery Industry Press, Chengdu (in Chinese).
      Keshk, H.M., Abdel-Aziem, M.M., Ali, A.S., et al., 2014. Performance Evaluation of Quality Measurement for Super-Resolution Satellite Images. Digital Image Processing, 6(2): 364-371. doi: 10.1109/SAI.2014.6918212
      Kruse, F.A., 2000. The Effects of Spatial Resolution, Spectral Resolution, and SNR on Geologic Mapping Using Hyperspectral Data, Northern Grapevine Mountains, Nevada. In: Proceedings of the 9th JPL Airborne Earth Science Workshop, ed. . Jet Propulsion Laboratory Publication, California, 1-9.
      Ma, D.M., 2004. Hyperspectral Image Quality Assessment. Infraded, (7): 18-23(in Chinese with English abstract).
      Ma, S.B., An, Y.L., Zhang, Y.H., 2014. HJ-A Remote Sensing Satellite CCD Data Quality Evaluation. Journal of Liupanshui Teachers College, 26(2): 38-42(in Chinese with English abstract).
      Paul, J.C., Jenniefr, L.D., 1989. Estimation of Signal to Noise: A New Porceduer Applied to AVIRIS Data. IEEE Geoscience and Remote Sensing, 27(5): 620-628. doi: 10.1109/TGRS.1989.35945
      Wang, K.Q., 2000. Quality Assessment of Digital Image. Measurement &Control Technology, 19(5): 14-16(in Chinese with English abstract).
      Xiong, X.H., 2004. Digital Image Quality Evaluation Method Review. Science of Surveying and Mapping, 29(1): 68-71(in Chinese with English abstract).
      Yuan, T., Zheng, X.Q., Hu, X., et al., 2014. A Method for the Evaluation of Image Quality According to the Recognition Effectiveness of Objects in the Optical Remote Sensing Image Using Machine Learning Algorithm. PLoS ONE, 9(1): e86528. doi: 10.1371/journal.pone.0086528
      陈秋林, 薛永棋, 2000. OMIS成像光谱数据信噪比的计算. 遥感学报, 4(4): 284-289.
      程佩青, 2002. 数字信号处理教程(第二版). 北京: 清华大学出版社.
      韩孟啸, 2010. 遥感数据质量评价方法. 科协论坛, (3), 86-86. doi: 10.3969/j.issn.1007-3973.2010.03.045
      John R. Jensen著, 陈晓玲译, 2007. 数字影像处理导论. 成都: 机械工业出版社.
      马德敏, 2004. 高光谱图像质量评价. 红外, (7): 18-23. doi: 10.3969/j.issn.1672-8785.2004.07.004
      马士彬, 安裕伦, 张跃红, 2014. HJ-A遥感卫星CCD数据质量评价. 六盘水师范学院学报, 26(2): 38-42. doi: 10.3969/j.issn.1671-055X.2014.02.011
      汪孔桥, 2000. 数字影像的质量评价. 测控技术, 19(5): 14-16. doi: 10.3969/j.issn.1000-8829.2000.05.003
      熊兴华, 2004. 数字影像质量评价方法评述. 测绘科学, 29(1): 68-71. doi: 10.3771/j.issn.1009-2307.2004.01.022
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(1)

      Article views (3552) PDF downloads(457) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return