• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 40 Issue 8
    Aug.  2015
    Turn off MathJax
    Article Contents
    Shuai Qin, Huang Shuang, Li Zhizhong, Chen Shengbo, Xu Shouli, 2015. The Metal Element Information Extraction from Hyperion Data Based on the Vegetation Stress Spectra. Earth Science, 40(8): 1319-1324. doi: 10.3799/dqkx.2015.112
    Citation: Shuai Qin, Huang Shuang, Li Zhizhong, Chen Shengbo, Xu Shouli, 2015. The Metal Element Information Extraction from Hyperion Data Based on the Vegetation Stress Spectra. Earth Science, 40(8): 1319-1324. doi: 10.3799/dqkx.2015.112

    The Metal Element Information Extraction from Hyperion Data Based on the Vegetation Stress Spectra

    doi: 10.3799/dqkx.2015.112
    • Received Date: 2015-03-19
    • Publish Date: 2015-08-01
    • The migration enrichment of metallogenic elements in the bearing bed can cause changes of the spectrum of overlying vegetation. Therefore, the metallogenic elements enrichment information which is extracted by using vegetation spectral response characteristics can be used to indicate the underlying mineral deposits. In this paper, Xi Ujimqin Qi grassland in Inner Mongolian was taken as an example. The spectra of the vegetation was collected and Nine metal elements in the vegetation were measured. The influence of red edge and absorption depth on the sensitivity of different metallogenic elements were analyzed. The significance of model parameters was verified and the element-response model based on absorption depth was established to detect W and Co elements, which was applied to hyperspectral data(Hyperion). Combined with the field work, the element contents of enriched samples are testified to be higher than the background values. This research shall provide new perspective for mineral investigation and prediction of hyperspectral remote sensing in vegetated area.

       

    • loading
    • Chen, S.B., Liu, Y.L., Yang, Q., et al., 2012a. Lithologic Classification from Hyperspectral Data in Dense Vegetation Cover Area. Journal of Jilin University: Earth Science Edition, 42(6): 1959-1965(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201206044.htm
      Chen, S.B., Zhou, C., Wang, J.N., 2012b. Vegetation Stress Spectra and Their Relation with the Contents of Metal Elements within the Plant Leaves in Metal Mines in Heilongjiang. Spectroscopy and Spectral Analysis, 32(5): 1310-1315(in Chinese with English abstract).
      Darvishzadeh, R., Skidmore, A., Schlerf, M., et al., 2008. LAI and Chlorophyll Estimation for a Heterogeneous Grassland Using Hyperspectral Measurements. ISPRS Journal of Photogrammetry and Remote Sensing, 63(4): 409-426. doi: 10.1016/j.isprsjprs.2008.01.001
      Gan, F.P., Liu, S.W., Zhou, Q., 2004. Identification of Mining Pollution Using Hyperion Data at Dexing Copper Mine Jiangxi Province, China. Earth Science—Journal of China University of Geosciences, 29(1): 119-126(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200401020.htm
      Gitelson, A.A., Merzlyak, M.N., Lichtenthaler, H.K., 1996. Detection of Red Edge Position and Chlorophyll Content by Reflectance Measurements Near 700 nm. Journal of Plant Physiology, 148(3-4): 501-508. doi: 10.1016/s0176-1617(96)80285-9
      Gong, S.Q., Wang, X., Shen, R.P., et al., 2010. Study on Heavy Metal Element Content in the Coastal Saline Soil by Hyperspectral Remote Sensing. Remote Sensing Technology and Application, 25(2): 169-177(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YGJS201002000.htm
      Houborg, R., Anderson, M., Daughtry, C., 2009. Utility of an Image-Based Canopy Reflectance Modeling Tool for Remote Estimation of LAI and Leaf Chlorophyll Content at the Field Scale. Remote Sensing of Environment, 113(1): 259-274. doi: 10.1016/j.rse.2008.09.014
      Huang, Z., Turner, B.J., Dury, S.J., et al., 2004. Estimating Foliage Nitrogen Concentration from HYMAP Data Using Continuum Removal Analysis. Remote Sensing of Environment, 93(1-2): 18-29. doi: 10.1016/j.rse.2004.06.008
      Kruse, F.A., Boardman, J.W., Huntington, J.F., 2003. Comparison of Airborne Hyperspectral Data and EO-1 Hyperion for Mineral Mapping. IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1388-1400. doi: 10.1109/tgrs.2003.812908
      Lin, F.F., Chen, Z.L., Wang, K., et al., 2009. Determination of Nitrogen in Rice Leaf Based on Ftir Spectra and siPLS-GA-PLS Algorithm. Journal of Infrared and Millimeter Waves, 28(4): 277-280(in Chinese with English abstract). doi: 10.3724/SP.J.1010.2009.00277
      Rosso, P.H., Pushnik, J.C., Lay, M., et al., 2005. Reflectance Properties and Physiological Responses of Salicornia Virginica to Heavy Metal and Petroleum Contamination. Environmental Pollution, 137(2): 241-252. doi: 10.1016/j.envpol.2005.02.025
      Sánchez-Azofeifa, G.A., Castro, K., Wright, S.J., et al., 2009. Differences in Leaf Traits, Leaf Internal Structure, and Spectral Reflectance between Two Communities of Lianas and Trees: Implications for Remote Sensing in Tropical Environments. Remote Sensing of Environment, 113(10): 2076-2088. doi: 10.1016/j.rse.2009.05.013
      Xu, M.X., Wu, S.H., Zhou, S.L., et al., 2011. Hyperspectral Reflectance Models for Retrieving Heavy Metal Content: Application in the Archaeological Soil. J. Infrared Milli. Waves, 30(2): 109-114(in Chinese with English abstract). http://www.oalib.com/paper/1598232
      Zarco-Tejada, P.J., Miller, J.R., Morales, A., et al., 2004. Hyperspectral Indices and Model Simulation for Chlorophyll Estimation in Open-Canopy Tree Crops. Remote Sensing of Environment, 90(4): 463-476. doi: 10.1016/j.rse.2004.01.017
      Zhu, X.Y., Zhou, H., Yu, X.B., 2009. The Calculation Methods of Permeability Variation Coefficient-Taking Ningdong Oilflied in Mahuangshan West Block as An Example. Offshore Oil, 29(2): 23-27(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYSY200902006.htm
      Zhu, Y.Q., Qu Y.H., Liu S.H., et al., 2014. A Reflectance Spectra Model for Copper-Stressed Leaves: Advances in the PROSPECT Model through Addition of the Specific Absorption Coefficients of the Copper Ion. International Journal of Remote Sensing, 35(4): 1356-1373. doi: 10.1080/01431161.2013.876123
      陈圣波, 刘彦丽, 杨倩, 等, 2012a. 植被覆盖区卫星高光谱遥感岩性分类. 吉林大学学报: 地球科学版, 42(6): 1959-1965. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201206044.htm
      陈圣波, 周超, 王晋年, 2012b. 黑龙江多金属矿区植物胁迫光谱及其与金属元素含量关系研究. 光谱学与光谱分析, 32(5): 1310-1315. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201205043.htm
      甘甫平, 刘圣伟, 周强, 2004. 德兴铜矿矿山污染高光谱遥感直接识别研究. 地球科学——中国地质大学学报, 29(1): 119-126. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200401020.htm
      龚绍琦, 王鑫, 沈润平, 等, 2010. 滨海盐土重金属含量高光谱遥感研究. 遥感技术与应用, 25(2): 169-177. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201002000.htm
      林芬芳, 陈祝炉, 王珂, 等, 2009. 基于傅里叶变换红外光谱和siPLS-GA-PLS的水稻叶片氮素含量预测研究. 红外与毫米波学报, 28(4): 277-280. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH200904008.htm
      徐明星, 吴绍华, 周生路, 等, 2011. 重金属含量的高光谱建模反演: 考古土壤中的应用. 红外与毫米波学报, 30(2): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201102004.htm
      朱小影, 周红, 余训兵, 2009. 渗透率变异系数的几种计算方法——以麻黄山西区块宁东油田2, 3井区为例. 海洋石油, 29(2): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-HYSY200902006.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(2)

      Article views (3147) PDF downloads(303) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return