• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 40 Issue 8
    Aug.  2015
    Turn off MathJax
    Article Contents
    Zhou Chao, Wang Daming, Chen Shengbo, Liu Yanli, Wang Mingchang, 2015. Vegetation Corrected Continuum Depths Model and Its Application in Mineral Extraction from Hyperspectral Image. Earth Science, 40(8): 1365-1370. doi: 10.3799/dqkx.2015.119
    Citation: Zhou Chao, Wang Daming, Chen Shengbo, Liu Yanli, Wang Mingchang, 2015. Vegetation Corrected Continuum Depths Model and Its Application in Mineral Extraction from Hyperspectral Image. Earth Science, 40(8): 1365-1370. doi: 10.3799/dqkx.2015.119

    Vegetation Corrected Continuum Depths Model and Its Application in Mineral Extraction from Hyperspectral Image

    doi: 10.3799/dqkx.2015.119
    • Received Date: 2015-04-11
    • Publish Date: 2015-08-01
    • The objective of this study is to enhance the absorption feature of hydroxyl and carbonate minerals, and to improve the precision of the minerals information extraction in the vegetation covered area. The linear mixing spectra of a pixel containing a hydroxyl/carbonate mineral, green and dry vegetation has been simulated. When a fixed wavelength range is considered, continuum removed absorption depths for diagnostic absorption features of three end-members show significantly linear relation. The vegetation corrected continuum depths (VCCD) model was established to detect hydroxyl or carbonate mineral, which was tested with hyperspectral data (Hyperion) collected at Huma in Xiaoxing'anling, China. Comparing the extracting mineral results and field samples of rock, it is found that the extracting minerals information correspond with that of the polished section of mineral, but the disturbance information is found in the river bed or along the road.

       

    • loading
    • Chen, S.B., Liu, Y.L., Yang, Q., et al., 2013. Lithological Classification from Hyperspectral Data in Dense Vegetation Cover Area. Journal of Jilin University(Earth Science Edition), 42(6): 1959-1965 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201206044.htm
      Clark, R.N., King, T.V.V., Klejwa, M., et al., 1990. High Spectral Resolution Reflectance Spectroscopy of Minerals. Journal of Geophysical Research, 95(B8): 12653. doi: 10.1029/jb095ib08p12653
      Crowley, J.K., Brickey, D.W., Rowan, L.C., 1989. Airborne Imaging Spectrometer Data of the Ruby Mountains, Montana: Mineral Discrimination Using Relative Absorption Band-Depth Images. Remote Sensing of Environment, 29(2): 121-134. doi: 10.1016/0034-4257(89)90021-7
      Galvão, L.S., Almeida-Filho, R., Vitorello, Í., 2005. Spectral Discrimination of Hydrothermally Altered Materials Using ASTER Short-Wave Infrared Bands: Evaluation in a Tropical Savannah Environment. International Journal of Applied Earth Observation and Geoinformation, 7(2): 107-114. doi: 10.1016/j.jag.2004.12.003
      Gan, F.P., Wang, R.S., Ma, A.N., 2003. Spectral Identification Tree (Sit) for Mineral Extraction Based on Spectral Characteristics of Minerals. Earth Science Frontiers, 10(2): 445-454 (in Chinese with English abstract).
      Gong, P., Pu, R.L., 2000. Hyperspectral Remote Sensing and Its Applications. Higher Education Press, Beijing (in Chinese).
      Hewson, R.D., Cudahy, T.J., Drake-Brockman, J., et al., 2006. Mapping Geology Associated with Manganese Mineralisation Using Spectral Sensing Techniques at Woodie Woodie, East Pilbara. Exploration Geophysics, 37(4): 389. doi: 10.1071/eg06389
      Hunt, G.R., 1982. Spectroscopic Properties of Rocks and Minerals. Volume Ⅰ, Handbook of Physical Properties of Rocks, CRC Press, Boca Raton.
      Karnieli, A., Kaufman, Y.J., Remer, L., et al., 2001. AFRI-Aerosol Free Vegetation Index. Remote Sensing of Environment, 77(1): 10-21. doi: 10.1016/s0034-4257(01)00190-0
      Kokaly, R.F., Clark, R.N., 1999. Spectroscopic Determination of Leaf Biochemistry Using Band-Depth Analysis of Absorption Features and Stepwise Multiple Linear Regression. Remote Sensing of Environment, 67(3): 267-287. doi: 10.1016/s0034-4257(98)00084-4
      Luo, W.F., Zhong, L., Zhang, B., et al., 2010. Independent Component Analysis for Spectral Unmixing in Hyperspectral Remote Sensing Image. Spectroscopy and Spectral Analysis, 30(6): 1628-1633 (in Chinese with English abstract). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4566756
      Lü, F.J., Hao, Y.S., Wang, J., et al., 2011. Extraction of Alteration Mineral Information Based on Hyperspectral Data in Vegetation Covering Field. Journal of Jilin University (Earth Science Edition), 41(1): 316-321 (in Chinese with English abstract). http://www.researchgate.net/publication/286865901_Extraction_of_alteration_mineral_information_based_on_hyperspectral_data_in_vegetation_covering_field
      Murphy, R.J., 1995. The Effects of Surficial Vegetation Cover on Mineral Absorption Feature Parameters. International Journal of Remote Sensing, 16(12): 2153-2164. doi: 10.1080/01431169508954548
      Mutanga, O., Skidmore, A.K., 2007. Red Edge Shift and Biochemical Content in Grass Canopies. ISPRS Journal of Photogrammetry and Remote Sensing, 62(1): 34-42. doi: 10.1016/j.isprsjprs.2007.02.001
      Nagler, P.L., Daughtry, C.S.T., Goward, S.N., 2000. Plant Litter and Soil Reflectance. Remote Sensing of Environment, 71(2): 207-215. doi: 10.1016/s0034-4257(99)00082-6
      Nanni, M.R., Demattê, J.A.M., 2006. Spectral Reflectance Methodology in Comparison to Traditional Soil Analysis. Soil Science Society of America Journal, 70(2): 393. doi: 10.2136/sssaj2003.0285
      Rodger, A., Cudahy, T., 2009. Vegetation Corrected Continuum Depths at 2.200 μm: An Approach for Hyperspectral Sensors. Remote Sensing of Environment, 113(10): 2243-2257. doi: 10.1016/j.rse.2009.06.011
      van der Meer, F.V.D., 2004. Analysis of Spectral Absorption Features in Hyperspectral Imagery. International Journal of Applied Earth Observation and Geoinformation, 5(1): 55-68. doi: 10.1016/j.jag.2003.09.001
      陈圣波, 刘彦丽, 杨倩, 等, 2013. 植被覆盖区卫星高光谱遥感岩性分类. 吉林大学学报(地球科学版), 42(6): 1959-1965. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201206044.htm
      甘甫平, 王润生, 马蔼乃, 2003. 基于特征谱带的高光谱遥感矿物谱系识别. 地学前缘, 10(2): 445-454. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200302033.htm
      宫鹏, 浦瑞良, 2000. 高光谱遥感及其应用. 北京: 高等教育出版社.
      罗文斐, 钟亮, 张兵, 等, 2010. 高光谱遥感图像光谱解混的独立成分分析技术. 光谱学与光谱分析, 30(6): 1628-1633. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201006042.htm
      吕凤军, 郝跃生, 王娟, 等, 2011. 植被覆盖区高光谱蚀变矿物信息提取. 吉林大学学报(地球科学版), 41(1): 316-321. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201101045.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)  / Tables(2)

      Article views (3331) PDF downloads(299) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return