• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Wu Songtao, Zou Caineng, Zhu Rukai, Yuan Xuanjun, Yao Jingli, Yang Zhi, Sun Liang, Bai Bin, 2015. Reservoir Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin. Earth Science, 40(11): 1810-1823. doi: 10.3799/dqkx.2015.162
    Citation: Wu Songtao, Zou Caineng, Zhu Rukai, Yuan Xuanjun, Yao Jingli, Yang Zhi, Sun Liang, Bai Bin, 2015. Reservoir Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin. Earth Science, 40(11): 1810-1823. doi: 10.3799/dqkx.2015.162

    Reservoir Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin

    doi: 10.3799/dqkx.2015.162
    • Received Date: 2015-03-02
    • Publish Date: 2015-11-15
    • The successful exploration and development of shale gas have triggered an upsurge of research in global marine shale. However, more reservoir quality research of non-marine shale in oil window is still needed. Reservoir quality potential of Upper Triassic Chang 7 shale in Ordos basin was analyzed based on the data from thin section, FE-SEM, environmental SEM, nano-CT, GRI, and gas adsorption. Chang 7 shale is deposited in semi-deep to deep lake, covering an area of 10×104 km2. Geochemical data suggests that Chang 7 shale has potential of great hydrocarbon (HC) generation, with TOC > 2%, Ro=0.8%-1.0% and HI=124-480 mg/g. The brittle mineral content is 45%-59%. The total porosity and permeability are 0.6%-3.8%, 0.000 72×10-3-0.002 30×10-3 μm2 respectively. Three types of pores including interparticle pores, intra-particle pores and intra-organic matter (OM) pores are discovered, and intra-illite/smectite mix-layers pores dominate in the storage space, with small number of OM pores. The diameter of pores is 30-200 nm and the connectivity of pore system is medium to good, indicating that Chang 7 shale is of the potential to become reservoir for shale oil. The pore volume is more related to illite/smectite mix-layers content than to that of maturity and hydrocarbon index, which may suggest that the porosity in Chang 7 shale is controlled by diagenesis rather than HC generation. The residual HC is absorbed and distributed as free hydrocarbons in intra-pyrite pores, intra-illite/smectite mix-layer pores, intra-illite pores and inter-feldspar pores.

       

    • Ambrose, R.J., Hartman, R.C., Diaz-Campos, M., et al., 2010. New Pore-Scale Considerations for Shale Gas in Place Calculations. SPE Unconventional Gas Conference, Pittsburgh.
      Chen, M., Jin, Y., Zhang, G.Q., 2008. Rock Mechanics in Petroleum Engineering. Science Press, Beijing (in Chinese).
      Curtis, M.E., Ambrose, R.J., Sondergeld, C.H., et al., 2010. Structural Characterization of Gas Shales on the Micro- and Nano-Scales. Canadian Unconventional Resources & International Petroleum Conference, Calgary, 15. doi: 10.218/137693-MS
      Curtis, M.E., Ambrose, R.J., Sondergeld, C.H., et al., 2012. Investigating the Microstructure of Gas Shales by FIB/SEM Tomography & STEM Imaging. AAPG 2012 Annual Conference and Exhibition, Long Beach.
      Deng, X.Q., Li, W.H., Liu, X.S., et al., 2009. Discussion on the Stratigraphic Boundary between Middle Triassic and Upper Triassic. Acta Geologica Sinica, 83(8): 1089-1096 (in Chinese with English abstract). http://www.researchgate.net/publication/287869770_Discussion_on_the_stratigraphic_boundary_between_middle_triassic_and_upper_triassic
      Desbois, G., Urai, J.L., Kukla, P.A., 2009. Morphology of the Pore Space in Claystones—Evidence from BIB/FIB Ion Beam Sectioning and Cryo-SEM Observations. eEarth Discuss, (4): 15-22. http://www.oalib.com/paper/1376104
      Dewhurst, D.N., Jones, R.M., Raven, M.D., 2002. Microstructural and Petrophysical Characterization of Muderong Shale: Application to Top Seal Risking. Petroleum Geoscience, (8): 371-383. http://www.ingentaconnect.com/content/geol/pg/2002/00000008/00000004/art00008
      Duan, Y., Cao, X.X., Zhao, Y., et al., 2014. Characteristics and Formation Mechanism of Mesozoic Underpressured Reservoirs in Ordos Basin. Earth Science—Journal of China University of Geosciences, 39(3): 341-349 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201403010.htm
      Fu, Q., Li, Y., 2010. Characteristics of Slope Breaks and Its Implication on Petroleum Geology in Yanchang Formation Chang 6 (Late-Triassic) of Ordos Basin. Acta Sedimentologica Sinica, 28(2): 294-298 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201002011.htm
      Gareth, R.C., Bustin, R.M., Power, I.M., 2012. Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy Image Analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units. AAPG Bulletin, 96(6): 1099-1119. doi: 10.1306/10171111052
      Hanson, A.D., Ritts, B.D., Moldwan, J.M., 2007. Organic Geochemistry of Oil and Source Rock Strata of the Ordos Basin, North-Central China. AAPG Bulletin, 91(9): 1273-1293. doi: 10.1306/05040704131
      Huang, J.L., Zou, C.N., Li, J.Z., et al., 2012. Shale Gas Generation and Potential of the Lower Cambrian Qiongzhusi Formation in Southern Sichuan Basin, China. Petroleum Exploration and Development, 39(1): 69-75 (in Chinese with English abstract). http://www.cqvip.com/QK/90664X/201201/40612853.html
      Huang, Z.K., Chen, J.P., Wang, Y.J., et al., 2013. Characteristics of Micropores in Mudstones of the Cretaceous Qingshankou Formation, Songliao Basin. Acta Petrolei Sinica, 34(1): 30-36 (in Chinese with English abstract). http://www.researchgate.net/publication/287947715_Characteristics_of_micropores_in_mudstones_of_the_Cretaceous_Qingshankou_Formation_Songliao_Basin
      Jarvie, D.M., Hill, R.J., Ruble, T.E., et al., 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4): 475-499. doi: 10.1306/12190606068
      Jia, C.Z., Zheng, M., Zhang, Y.F., 2012. Unconventional Hydrocarbon Resources in China and the Prospect of Exploration and Development. Petroleum Exploration and Development, 39(2): 129-136 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380412600263
      Jia, J.L., Liu, Z.J., Achim, B., et al., 2014. Major Factors Controlling Formation of Oil Shale in Nenjiang Formation of Songliao Basin. Earth Science—Journal of China University of Geosciences, 39(2): 174-186 (in Chinese with English abstract). doi: 10.3799/dqkx.2014.017
      Joel, D.W., Steven, W.S., 2011. Eagle Ford Shale Reservoir Properties from Digital Rock Physics. First Break, 29: 97-100.
      Kang, Y.Z., 2012. Characteristics and Exploration Prospect of Unconventional Shale Gas Reservoirs in China. Natural Gas Industry, 32(4): 1-5 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380412600263
      Li, X.J., Lü, Z.G., Dong, D.Z., et al., 2009. Geologic Controls on Acunmulation of Shale Gas in North America. Natural Gas Industry, 29(5): 27-32 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG200905006.htm
      Li, Y.X., Zhang, J.C., 2011. Types of Unconventional Oil and Gas Resources in China and Their Development Potential. International Petroleum Economics, (3): 61-67 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-GJJJ201103012.htm
      Loucks, R.G., Reed R.M., Ruppel S.C., 2010. Preliminary Classification of Matrix Pores in Mudstones. Coast Association of Geological Societies (GCAGS), April.
      Loucks, R.G., Reed R.M., Ruppel S.C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississipian Barnett Shale. Journal of Sedimentary Research, (79): 848-861. doi: 10.2110/jsr.2009.092
      Loucks, R.G., Reed, R.M., Ruppel, S.C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6): 1071-1098. doi: 10.1306/08171111061
      Loucks. R.G., Stephen, C.R., 2007. Mississippian Barnett Shale: Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas. AAPG Bulletin, 91(4): 579-601. doi: 10.1306/11020606059
      Ma, Y.S., Feng, J.H., Mu, Z.H., et al., 2012. The Potential and Exploring Progress of Unconventional Hydrocarbon Resources in SINOPEC. Engineering Sciences, 14(6): 22-30 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCKX201206003.htm
      McCreesh, C.A., Erlich, R., Crabtree, S.J., 1991. Petrography and Reservoir Physics 2: Relating Thin Section Porosity to Capillary Pressure, the Association between Pore Types and Throat Size. AAPG Bulletin, 75: 1563-1578.
      Milner, M., McLin, R., Petriello, J., 2010. Imaging Texture and Porosity in Mudstones and Shales: Comparison of Secondary and Ion Milled Backscatter SEM Methods. Canadian Unconventional Resources & International Petroleum Conference, Calgary.
      Passey, Q.R., Bohacs, K.M., Esch, W.L., et al., 2010. From Oil-Prone Source Rocks to Gas-Producing Shale Reservoir—Geologic and Petrophysical Characterization of Unconventional Shale Gas Reservoirs. CPS/SPE International Oil & Gas Conference and Exhibition, Beijing.
      Passey, Q.R., Bohacs, K.M., Esch, W.L. et al., 2012. My Source Rock is Now My Reservoir—Geologic and Petrophysical Characterization of Shale-Gas Reservoirs. 2011-2012 AAPG Distinguished Lecture, Bakersfield.
      Pepper, A.S., 1991. Estimating the Petroleum Expulsion Behaviour of Source Rocks: A Novel Quantitative Approach. In: England, W.A., Fleet, A.J., eds., Petroleum Migration. Geological Society of London, 59: 9-31.
      Pepper, A.S., Corvi, P.J., 1995. Simple Kinetic Models of Petroleum Formation: Part 1: Oil and Gas Generation from Kerogen. Marine Petroleum Geology, 12(3): 291-319. doi: 10.1016/0264-8172(95)98381-E
      Ritter, U., 2003. Solubility of Petroleum Compounds in Kerogen: Implications for Petroleum Expulsion. Organic Geochemistry, 34: 319-326. doi: 10.1016/S0146-6380(02)00245-0
      Schieber, J., 2010. Common Themes in the Formation and Preservation of Porosity in Shales and Mudstones—Illustrated with Examples Across the Phanerozoic. SPE-132370.
      Slatt, E.M., O'Neal, N.R., 2011. Pore Types in the Barnett and Woodford Gas Shale: Contribution to Understanding Gas Storage and Migration Pathways in Fine-Grained Rocks. AAPG Bulletin, 95(12): 2017-2030. doi: 10.1306/03301110145
      Stainforth, J.G., 2009. Practical Kinetic Modeling of Petroleum Generation and Expulsion. Marine Petroleum Geology, 26(4): 552-572. doi: 10.1016/j.marpetgeo.2009.01.006
      Tian, H., Zhang, S.C., Liu, S.B., et al., 2012. Determination of Organic-Rich Shale Pore Features by Mercury Injection and Gas Adsorption Methods. Acta Petrolei Sinica, 33(3): 419-427 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SYXB201203011.htm
      Yang, H., Fu, Q., Fu, J.H., 2009. Sedimentary Sequence and Petroleum Accumulation in Upper Triassic, Ordos Basin. Geological Publishing House, Beijing, 1-50 (in Chinese).
      Yang, H., Li, S.X., Liu, X.Y., 2013. Characteristics and Resource Prospects of Tight Oil and Shale Oil in Ordos Basin. Acta Petrolei Sinica, 34(1): 1-11 (in Chinese with English abstract). doi: 10.1038/aps.2012.174
      Yang, H., Zhang, W.Z., 2005. Leading Effect of High-Class Source Rock of Chang 7 in Ordos Basin on Enrichment of Low Permeability Oil-Gas Accumulation: Geology and Geochemistry. Geochimica, 34(2): 147-154 (in Chinese with English abstract).
      Yang, J.J., 2002. Tectonic Evolution and Oil-Gas Reservoir Distribution in Ordos Basin. Petroleum Industry Press, Beijing, 50-150 (in Chinese).
      Yu, J., Yang, Y.J., Du, J.L., 2010. Sedimentation during the Transgression Period in Late Triassic Yanchang Formation, Ordos Basin. Petroleum Exploration and Development, 37(2): 181-187 (in Chinese with English abstract). doi: 10.1016/S1876-3804(10)60025-0
      Zhang, W.Z., Yang, H., Li, J.F., et al., 2006. Leading Effect of High-Class Source Rock of Chang 7 in Ordos Basin on Enrichment of Low Permeability Oil-Gas Accumulation. Petroleum Exploration and Development, 33(3): 289-293 (in Chinese with English abstract).
      Zhang, W.Z., Yang, H., Yang, Y.H., et al., 2008. Petrology and Element Geochemistry and Development Environment of Yanchang Formation Chang-7 High Quality Source Rocks in Ordos Basin. Geochimica, 37(1): 59-64 (in Chinese with English abstract). http://www.researchgate.net/publication/285087763_Petrology_and_element_geochemistry_and_development_environment_of_Yanchang_Formation_Chang-7_high_quality_source_rocks_in_Ordos_Basin
      Zhao, M.W., Behr, H.J., Ahrendt, H., 1996. Thermal and Tectonic History of the Ordos Basin, China: Evidence from Apatite Fission Track Analysis, Vitrinite Reflectance, and K-Ar Dating. AAPG Bulletin, 80(6): 1110-1134. http://aapgbull.geoscienceworld.org/content/80/7/1110
      Zhao, X.Y., Zhang, Y.Y., 1990. Clay Mineral and Clay Mineral Analysis. Ocean Press, Beijing (in Chinese).
      Zou, C.N., Dong, D.Z., Wang, S.J., et al., 2010. Geological Characteristics, Formation Mechanism and Resource Potential of Shale Gas in China. Petroleum Exploration and Development, 37(6): 641-653 (in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60001-3
      Zou, C.N., Tao, S.Z., Hou, L.H., et al., 2011. Unconventional Petroleum Geology. Geological Publishing House, Beijing (in Chinese).
      Zou, C.N., Yang, Z., Cui, J.W., et al., 2013. Formation Mechanism, Geological Characteristics and Development Strategy of Nonmarine Shale Oil in China. Petroleum Exploration and Development, 40(1): 14-26 (in Chinese with English abstract). http://www.cqvip.com/QK/90664X/201301/44578517.html
      Zou, C.N., Yang, Z., Tao, S.Z., et al., 2012a. Nano-Hydrocatbon and the Accumulation in Coexisting Source and Reservoir. Petroleum Exploration and Development, 39(1): 13-26 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380412600111
      Zou, C.N., Zhu, R.K., Wu, S.T., et al., 2012b. Types, Characteristics, Genesis and Prospects of Conventional and Unconventional Hydrocarbon Accumulations. Acta Petrolei Sinica, 33(2): 173-187 (in Chinese with English abstract). doi: 10.1038/aps.2011.203
      陈勉, 金衍, 张广清, 2008. 石油工程岩石力学. 北京: 科学出版社.
      邓秀芹, 李文厚, 刘新社, 等, 2009. 鄂尔多斯盆地中三叠统与上三叠统地层界线讨论. 地质学报. 83(8): 1089-1096. doi: 10.3321/j.issn:0001-5717.2009.08.005
      段毅, 曹喜喜, 赵阳, 等, 2014. 鄂尔多斯盆地中生界低压油藏特征与形成机制. 地球科学——中国地质大学学报, 39(3): 341-349. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201403010.htm
      傅强, 李益, 2010. 鄂尔多斯盆地晚三叠世延长组长6期湖盆坡折带特征及其地质意义. 沉积学报, 28(2): 294-298. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201002011.htm
      黄金亮, 邹才能, 李建忠, 等, 2012. 川南下寒武统筇竹寺组页岩气形成条件及资源潜力. 石油勘探与开发, 39(1): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201009.htm
      黄振凯, 陈建平, 王义军, 等, 2013. 松辽盆地白垩系青山口组泥岩微观孔隙特征. 石油学报, 34(1): 30-36. doi: 10.3969/j.issn.1671-4067.2013.01.009
      贾承造, 郑民, 张永锋, 2012. 中国非常规油气资源与勘探开发前景. 石油石油勘探与开发, 39(2): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202002.htm
      贾建亮, 刘招君, Achim Bechtel, 等, 2014. 松辽盆地嫩江组油页岩发育控制因素. 地球科学——中国地质大学学报, 39(2): 174-186. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201402006.htm
      康玉柱, 2012. 中国非常规泥页岩油气藏特征及勘探前景展望. 天然气工业, 32(4): 1-5. doi: 10.3787/j.issn.1000-0976.2012.04.001
      李新景, 吕宗刚, 董大忠, 等, 2009. 北美页岩气资源形成的地质条件. 天然气工业, 5: 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200905006.htm
      李玉喜, 张金川, 2011. 我国非常规油气资源类型和潜力. 国际石油经济, (3): 61-67. doi: 10.3969/j.issn.1004-7298.2011.03.011
      马永生, 冯建辉, 牟泽辉, 等, 2012. 中国石化非常规油气资源潜力及勘探进展. 中国工程科学, 14(6): 22-30. doi: 10.3969/j.issn.1009-1742.2012.06.004
      田华, 张水昌, 柳少波, 等, 2012. 压汞法和气体吸附法研究富有机质页岩孔隙特征. 石油学报, 33(3): 419-427. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203011.htm
      杨华, 傅强, 付金华, 2009. 鄂尔多斯盆地晚三叠世盆地沉积层序与油气成藏. 北京: 地质出版社, 1-50.
      杨华, 李士祥, 刘显阳, 2013. 鄂尔多斯盆地致密油、页岩油特征及资源潜力. 石油学报, 34(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301000.htm
      杨华, 张文正, 2005. 论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用: 地质地球化学特征. 地球化学, 34(2): 147-154. doi: 10.3321/j.issn:0379-1726.2005.02.007
      杨俊杰, 2002. 鄂尔多斯盆地构造演化与油气分布规律. 北京: 石油工业出版社, 50-150.
      喻建, 杨亚娟, 杜金良, 2010. 鄂尔多斯盆地晚三叠世延长组湖侵期沉积特征. 石油勘探与开发, 37(2): 181-187. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201002009.htm
      张文正, 杨华, 李剑锋, 等, 2006. 论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用——强生排烃特征及机理分析. 石油勘探与开发, 33(3): 289-293. doi: 10.3321/j.issn:1000-0747.2006.03.006
      张文正, 杨华, 杨奕华, 等, 2008. 鄂尔多斯盆地长7优质烃源岩的岩石学、元素地球化学特征及发育环境. 地球化学, 37(1): 59-64. doi: 10.3321/j.issn:0379-1726.2008.01.008
      赵杏媛, 张有瑜, 1990. 粘土矿物与粘土矿物分析. 北京: 海洋出版社.
      邹才能, 董大忠, 王社教, 等, 2010. 中国页岩气形成机理、地质特征及资源潜力. 石油勘探与开发, 37(6): 641-653. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006003.htm
      邹才能, 陶士振, 侯连华, 等, 2011. 非常规油气地质. 北京: 地质出版社.
      邹才能, 杨智, 崔景伟, 等, 2013. 页岩形成机制、地质特征及发展对策. 石油勘探与开发, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htm
      邹才能, 杨智, 陶士振, 等, 2012a. 纳米油气与源储共生型油气聚集. 石油勘探与开发, 39(1): 13-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201003.htm
      邹才能, 朱如凯, 吴松涛, 等, 2012b. 常规与非常规油气聚集类型、特征、机理及展望: 以中国致密油和致密气为例. 石油学报, 33(2): 173-187. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201202002.htm
    • Relative Articles

    • Cited by

      Periodical cited type(55)

      1. 王爱民,王朝,张瑶瑶,艾兵权,李艾峰. 鄂尔多斯盆地靖边油田杨米涧地区长6致密油储集砂体特征及其主控因素. 内蒙古石油化工. 2024(03): 108-111 .
      2. 黄军平,刘新社,张艳,井向辉,张才利,李相博. 鄂尔多斯盆地海相页岩油地球化学特征及油源对比. 石油学报. 2024(08): 1202-1218 .
      3. 刘显阳,郭雯,刘江艳,李士祥. 鄂尔多斯盆地湖盆中部长7_3亚段深水砂质沉积特征及勘探前景. 地球科学. 2023(01): 279-292 . 本站查看
      4. 张娟,张晓辉,许珍萍,曹青,余林瑶. 鄂尔多斯盆地延长组长7段页岩油赋存状态及开发特征. 西安石油大学学报(自然科学版). 2023(01): 10-18 .
      5. 侯连华,吴松涛,姜晓华,田华,于志超,李亚锋,廖凤蓉,王婵菲,沈月,李梦莹,华柑霖,周川闽,李华. 页岩油地质评价实验方法现状、挑战与发展方向. 石油学报. 2023(01): 72-90 .
      6. 崔德艺,辛红刚,张亚东,淡卫东,陈俊霖,张珊,李家程,李树同. 鄂尔多斯盆地宁县地区长7_3亚段泥页岩地球化学特征及页岩油意义. 天然气地球科学. 2023(02): 210-225 .
      7. 冯永超. 泾河油田页岩油水平井优快钻井技术. 西部探矿工程. 2023(01): 67-71 .
      8. 刘朋恩,刘文连,许汉华,吉锋. 基于SEM及PCAS的白云岩溶蚀孔隙结构量化评价研究. 地质灾害与环境保护. 2023(01): 59-63 .
      9. 王民,余昌琦,费俊胜,李进步,张宇辰,言语,吴艳,董尚德,唐育龙. 页岩油在干酪根中吸附行为的分子动力学模拟与启示. 石油与天然气地质. 2023(06): 1442-1452 .
      10. 黄文欢,陈全腾,丁慧霞. 渤海湾盆地博兴洼陷沙四上亚段泥页岩储层含油性与可动性评价. 世界地质. 2022(02): 298-306 .
      11. Li-Chun Kuang,Lian-Hua Hou,Song-Tao Wu,Jing-Wei Cui,Hua Tian,Li-Jun Zhang,Zhong-Ying Zhao,Xia Luo,Xiao-Hua Jiang. Organic matter occurrence and pore-forming mechanisms in lacustrine shales in China. Petroleum Science. 2022(04): 1460-1472 .
      12. 吴松涛,朱如凯,罗忠,杨智,姜晓华,林敏捷,苏玲. 中国中西部盆地典型陆相页岩纹层结构与储层品质评价. 中国石油勘探. 2022(05): 62-72 .
      13. 匡立春,侯连华,杨智,吴松涛. 陆相页岩油储层评价关键参数及方法. 石油学报. 2021(01): 1-14 .
      14. 刘建,惠晨,樊建明,吕文雅,王继伟,尹陈,王浩南. 鄂尔多斯盆地合水地区长6致密砂岩储层现今地应力分布特征及其开发建议. 地质力学学报. 2021(01): 31-39 .
      15. 李灿星,刘冬冬,肖磊,姜振学,李卓,郭靖. 松辽盆地白垩系陆相页岩孔隙演化过程研究. 石油科学通报. 2021(02): 181-195 .
      16. Songtao Wu,Shixiang Li,Xuanjun Yuan,Zhi Yang,Aifen Li,Jingwei Cui,Songqi Pan,Zhiguo Mao,Ling Su,You Zhou. Fluid Mobility Evaluation of Tight Sandstones in Chang 7 Member of Yanchang Formation, Ordos Basin. Journal of Earth Science. 2021(04): 850-862 .
      17. 师良,赵彤彤,查辉,王妍妍,霍萍萍,范柏江. 延安周边地区页岩地球化学特征及页岩油潜力评价. 现代地质. 2021(04): 1043-1053 .
      18. 付金华,郭雯,李士祥,刘显阳,程党性,周新平. 鄂尔多斯盆地长7段多类型页岩油特征及勘探潜力. 天然气地球科学. 2021(12): 1749-1761 .
      19. 吕文雅,曾联波,周思宾,吉园园,梁丰,惠晨,尉加盛. 鄂尔多斯盆地西南部致密砂岩储层微观裂缝特征及控制因素——以红河油田长8储层为例. 天然气地球科学. 2020(01): 37-46 .
      20. 邱振,邹才能. 非常规油气沉积学:内涵与展望. 沉积学报. 2020(01): 1-29 .
      21. 李森,朱如凯,崔景伟,罗忠,焦航,柳涵. 鄂尔多斯盆地长7段细粒沉积岩特征与古环境——以铜川地区瑶页1井为例. 沉积学报. 2020(03): 554-570 .
      22. 霍秋立,曾花森,付丽,张晓畅,范庆华. 松辽盆地北部青一段泥页岩储集特征及孔隙演化. 大庆石油地质与开发. 2019(01): 1-8 .
      23. 仇秀梅,刘亚东,董学林. 鄂西建始地区大隆组页岩有机地球化学特征. 岩性油气藏. 2019(02): 96-104 .
      24. 仇秀梅,刘亚东,董学林. 鄂西建始地区页岩储层特征及含气性研究. 岩石矿物学杂志. 2019(03): 365-374 .
      25. 唐建云,张刚,樊宏伟,刘见通,陈玉宝. 张家湾地区长_7页岩生烃潜力及孔隙结构特征. 西南石油大学学报(自然科学版). 2019(03): 29-41 .
      26. 李婷婷,成志刚,石玉江,席辉,罗少成,郭笑锴. 基于地层元素测井资料的陇东长7储层矿物含量精确计算. 测井技术. 2019(03): 303-309 .
      27. 宋昱,姜波,李凤丽,闫高原,么玉鹏. 低-中煤级构造煤纳米孔分形模型适用性及分形特征. 地球科学. 2018(05): 1611-1622 . 本站查看
      28. 闫高原,韦重韬,宋昱,张军建,杨浩. 基于Ar-SEM及PCAS页岩孔隙结构定量表征. 地球科学. 2018(05): 1602-1610 . 本站查看
      29. 朱如凯,金旭,王晓琦,刘晓丹,李建明,孙亮,吴松涛,苏玲,焦航,崔景伟. 复杂储层多尺度数字岩石评价. 地球科学. 2018(05): 1773-1782 . 本站查看
      30. 吴松涛,朱如凯,李勋,金旭,杨智,毛治国. 致密储层孔隙结构表征技术有效性评价与应用. 地学前缘. 2018(02): 191-203 .
      31. 杜学斌,陆永潮,刘惠民,刘辉,王勇,熊仕鹏,郭来源,刘占红,彭丽. 细粒沉积物中不同级次高频层序划分及其地质意义——以东营凹陷沙三下—沙四上亚段泥页岩为例. 石油实验地质. 2018(02): 244-252 .
      32. 高辉,何梦卿,赵鹏云,窦亮彬,王琛. 鄂尔多斯盆地长7页岩油与北美地区典型页岩油地质特征对比. 石油实验地质. 2018(02): 133-140 .
      33. 尹娜,薛莲花,姜呈馥,杨爽,高潮,陈国俊. 富有机质页岩生烃阶段孔隙演化及分形特征. 天然气地球科学. 2018(12): 1817-1828 .
      34. 李卓,姜振学,唐相路,王朋飞,黄璞,王国臻. 渝东南下志留统龙马溪组页岩岩相特征及其对孔隙结构的控制. 地球科学. 2017(07): 1116-1123 . 本站查看
      35. 王朋飞,姜振学,李卓,陈磊,王国臻,黄璞,阴丽诗. 渝东北下寒武统牛蹄塘组页岩微纳米孔隙结构特征. 地球科学. 2017(07): 1147-1156 . 本站查看
      36. 彭女佳,何生,郝芳,何希鹏,张培先,翟刚毅,包书景,何陈诚,杨锐. 川东南彭水地区五峰组-龙马溪组页岩孔隙结构及差异性. 地球科学. 2017(07): 1134-1146 . 本站查看
      37. 戴方尧,郝芳,胡海燕,林俊峰,黎祺. 川东焦石坝五峰-龙马溪组页岩气赋存机理及其主控因素. 地球科学. 2017(07): 1185-1194 . 本站查看
      38. 郭来源,张士万,解习农,李忠生,黄传炎,陈北辰. 鄂西-渝东地区下侏罗统东岳庙段泥岩地球化学特征及有机质富集模式. 地球科学. 2017(07): 1235-1246 . 本站查看
      39. 杨正明,张亚蒲,李海波,郑兴范,雷启鸿. 核磁共振技术在非常规油气藏的应用基础. 地球科学. 2017(08): 1333-1339 . 本站查看
      40. 马义权,杜学斌,刘惠民,陆永潮. 东营凹陷沙四上亚段陆相页岩岩相特征、成因及演化. 地球科学. 2017(07): 1195-1208 . 本站查看
      41. 徐壮,石万忠,翟刚毅,包书景,张晓明,王任,王健,王超,袁琪. 扬子地区下寒武统与下志留统黑色页岩孔隙度与有机碳关系差异性及原因. 地球科学. 2017(07): 1223-1234 . 本站查看
      42. 冯其红,徐世乾,王森,杨毅,高方方,徐亚娟. 基于嵌入离散裂缝的页岩气藏视渗透率模型. 地球科学. 2017(08): 1301-1313 . 本站查看
      43. 苏玉亮,盛广龙,王文东,贾建鹏,吴春新. 页岩气藏体积压裂有效改造体积计算方法. 地球科学. 2017(08): 1314-1323 . 本站查看
      44. 熊生春,储莎莎,皮淑慧,何英,李树铁,张亚蒲. 致密油藏储层微观孔隙特征与可动用性评价. 地球科学. 2017(08): 1379-1385 . 本站查看
      45. 徐中一,程林松,曹仁义,方思冬,吴九柱,庄永涛,艾爽. 基于裂缝性致密储层关键渗流参数的逆向渗吸速度计算. 地球科学. 2017(08): 1431-1440 . 本站查看
      46. 周尚文,王红岩,薛华庆,郭伟,李晓波. 基于Ono-Kondo格子模型的页岩气超临界吸附机理探讨. 地球科学. 2017(08): 1421-1430 . 本站查看
      47. 李向军,罗静兰,罗晓容,王香增,姜呈馥,雷裕红,高潮,尹景涛. 鄂尔多斯盆地长7段泥页岩系孔隙特征及其演化规律. 地质科技情报. 2017(04): 19-28 .
      48. 张建坤,何生,颜新林,侯宇光,陈小军. 页岩纳米级孔隙结构特征及热成熟演化. 中国石油大学学报(自然科学版). 2017(01): 11-24 .
      49. 吴浩,张春林,纪友亮,刘锐娥,曹尚,陈胜,张云钊,王晔,杜威,刘刚. 致密砂岩孔喉大小表征及对储层物性的控制——以鄂尔多斯盆地陇东地区延长组为例. 石油学报. 2017(08): 876-887 .
      50. 徐红卫,李贤庆,祁帅,周宝刚,王哲,高文杰,陈金明. 鄂尔多斯盆地延长探区延长组页岩气储层孔隙结构特征. 现代地质. 2017(02): 328-337 .
      51. 赵习森,党海龙,庞振宇,时丕同,曹尚,丁磊,白璞. 特低渗储层不同孔隙组合类型的微观孔隙结构及渗流特征——以甘谷驿油田唐157井区长6储层为例. 岩性油气藏. 2017(06): 8-14 .
      52. Cheng Feng,Yujiang Shi,Jiahong Li,Liang Chang,Gaoren Li,Zhiqiang Mao. A New Empirical Method for Constructing Capillary Pressure Curves from Conventional Logs in Low-Permeability Sandstones. Journal of Earth Science. 2017(03): 516-522 .
      53. 杨永飞,王晨晨,姚军,胡蓉蓉,孙海,赵建林. 页岩基质微观孔隙结构分析新方法. 地球科学. 2016(06): 1067-1073 . 本站查看
      54. 岳绍飞,王华,严德天,黄传炎,常大宇,李潇鹏,张静. 洛伊地区三叠系沉积体系特征及演化规律. 地球科学. 2016(10): 1683-1695 . 本站查看
      55. 朱如凯,吴松涛,苏玲,崔景伟,毛治国,张响响. 中国致密储层孔隙结构表征需注意的问题及未来发展方向. 石油学报. 2016(11): 1323-1336 .

      Other cited types(27)

    • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-05010203040
      Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 40.7 %FULLTEXT: 40.7 %META: 57.5 %META: 57.5 %PDF: 1.8 %PDF: 1.8 %FULLTEXTMETAPDF
      Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.6 %其他: 3.6 %Canada: 0.0 %Canada: 0.0 %China: 0.4 %China: 0.4 %[]: 0.1 %[]: 0.1 %上海: 0.4 %上海: 0.4 %东营: 0.1 %东营: 0.1 %中山: 0.0 %中山: 0.0 %乌鲁木齐: 0.0 %乌鲁木齐: 0.0 %京畿道: 0.1 %京畿道: 0.1 %克拉玛依: 0.1 %克拉玛依: 0.1 %六安: 0.0 %六安: 0.0 %兰州: 0.4 %兰州: 0.4 %凉山: 0.0 %凉山: 0.0 %北京: 28.5 %北京: 28.5 %十堰: 0.1 %十堰: 0.1 %南京: 0.3 %南京: 0.3 %南通: 0.0 %南通: 0.0 %卡尔加里: 0.0 %卡尔加里: 0.0 %台州: 0.9 %台州: 0.9 %呼和浩特: 0.1 %呼和浩特: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %唐山: 0.1 %唐山: 0.1 %大庆: 0.3 %大庆: 0.3 %天津: 0.5 %天津: 0.5 %宁德: 0.0 %宁德: 0.0 %宁波: 0.0 %宁波: 0.0 %安康: 0.4 %安康: 0.4 %广州: 0.1 %广州: 0.1 %张家口: 1.2 %张家口: 1.2 %徐州: 0.1 %徐州: 0.1 %成都: 0.4 %成都: 0.4 %扬州: 0.0 %扬州: 0.0 %无锡: 0.1 %无锡: 0.1 %日照: 0.2 %日照: 0.2 %昆明: 0.5 %昆明: 0.5 %朝阳: 0.3 %朝阳: 0.3 %杭州: 0.9 %杭州: 0.9 %武汉: 0.9 %武汉: 0.9 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.2 %济南: 0.2 %济宁: 0.1 %济宁: 0.1 %淮安: 0.0 %淮安: 0.0 %温州: 0.1 %温州: 0.1 %湖州: 0.3 %湖州: 0.3 %湘潭: 0.0 %湘潭: 0.0 %滨州: 0.1 %滨州: 0.1 %漯河: 0.3 %漯河: 0.3 %潮州: 0.1 %潮州: 0.1 %焦作: 0.1 %焦作: 0.1 %石家庄: 0.1 %石家庄: 0.1 %芒廷维尤: 11.9 %芒廷维尤: 11.9 %芝加哥: 0.3 %芝加哥: 0.3 %莫斯科: 0.2 %莫斯科: 0.2 %衢州: 0.5 %衢州: 0.5 %西宁: 39.9 %西宁: 39.9 %西安: 1.4 %西安: 1.4 %贵阳: 0.2 %贵阳: 0.2 %达州: 0.2 %达州: 0.2 %遂宁: 0.0 %遂宁: 0.0 %邯郸: 0.1 %邯郸: 0.1 %重庆: 0.1 %重庆: 0.1 %锦州: 0.0 %锦州: 0.0 %长春: 0.2 %长春: 0.2 %长沙: 0.4 %长沙: 0.4 %长治: 0.2 %长治: 0.2 %阳泉: 0.0 %阳泉: 0.0 %青岛: 0.8 %青岛: 0.8 %首尔: 0.1 %首尔: 0.1 %马湾: 0.1 %马湾: 0.1 %黄南: 0.0 %黄南: 0.0 %其他CanadaChina[]上海东营中山乌鲁木齐京畿道克拉玛依六安兰州凉山北京十堰南京南通卡尔加里台州呼和浩特哥伦布唐山大庆天津宁德宁波安康广州张家口徐州成都扬州无锡日照昆明朝阳杭州武汉洛阳济南济宁淮安温州湖州湘潭滨州漯河潮州焦作石家庄芒廷维尤芝加哥莫斯科衢州西宁西安贵阳达州遂宁邯郸重庆锦州长春长沙长治阳泉青岛首尔马湾黄南

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(1)

      Article views (4017) PDF downloads(354) Cited by(82)
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return