• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 40 Issue 12
    Dec.  2015
    Turn off MathJax
    Article Contents
    Liu Pengfei, Liu Tianyou, Yang Yushan, Zhang Henglei, Liu Shuang, 2015. An Improved Tilt Angle Method and Its Application: A Case of Weigang Iron-Ore Deposit, Jiangsu. Earth Science, 40(12): 2091-2102. doi: 10.3799/dqkx.2015.185
    Citation: Liu Pengfei, Liu Tianyou, Yang Yushan, Zhang Henglei, Liu Shuang, 2015. An Improved Tilt Angle Method and Its Application: A Case of Weigang Iron-Ore Deposit, Jiangsu. Earth Science, 40(12): 2091-2102. doi: 10.3799/dqkx.2015.185

    An Improved Tilt Angle Method and Its Application: A Case of Weigang Iron-Ore Deposit, Jiangsu

    doi: 10.3799/dqkx.2015.185
    • Received Date: 2014-12-18
    • Publish Date: 2015-12-15
    • In order to slove the "singularity" problem of Tilt angle, an improved tilt angle method to detect the field source boundaries is proposed in this paper. Theoretical simulations reveal that improved Tilt angle method inherits the properties of the 1st order vertical derivative and traditional tilt gradient that identifies boundaries by zero value line and it is better for the deep weak anomalies identification than other methods such as the total module of horizontal gradient. Besides, the improved Tilt angle method avoids the abnormal degeneration due to its clear physical significance. Magnetic anomalies of the Weigang iron-ore deposit is analyzed and anomaly D is significantly enhanced except for three main anomalies of A, B, C, which indicates that the weak anomaly D is caused by deep concealed orebodies. The orebody depth is found as 1 000-1 200 m, based on the interactive inversion results of the 2.5 dimension. DH6-6 drilled hole is located in line 6, exactly on the east side of anomaly D, which coincides with the boring drilling of thin ore body. No-mine DH6-7 drilled hole is located at the outside of the weak anomaly area. It is possible that iron orebodies may be discovered if a drilled hole is arranged to the west and the north of Line 5.

       

    • loading
    • Bhattacharyya, B.K., 1965. Two-Dimensional Harmonic Analysis as a Tool for Magnetic Interpretation. Geophysics, 30(5): 829-857. doi: 10.1190/1.1439658
      Chen, J.G., Xiao, F., Chang, T., 2011. Gravity and Magnetic Anomaly Separation Based on Bidimensional Empirical Mode Decomposition. Earth Science—Journal of China University of Geosciences, 36(2): 327-335(in Chinese with English abstract). doi: 10.3799/dgkx.2011.034
      Cheng, Q.M., 2012. Ideas and Methods for Mineral Resources Integrated Prediction in Covered Areas. Earth Science—Journal of China University of Geosciences, 37(6): 1109-1125(in Chinese with English abstract). doi: 10.3799/dqkx.2012.118
      Gerovska, D., Araúzo-Bravo, M.J., 2006. Calculation of Magnitude Magnetic Transforms with High Centricity and Low Dependence on the Magnetization Vector Direction. Geophysics, 71(5): 121-130. doi: 10.1190/1.2335516
      Grauch, V.J.S., Cordell, L., 1987. Limitations of Determining Density or Magnetic Boundaries from the Horizontal Gradient of Gravity or Pseudogravity Data. Geophysics, 52(1): 118-121. doi: 10.1190/1.1442236
      Guan, Z.N., Yao C.L., 1997. Inversion of the Total Gradient Modulus of Magnetic Anomaly due to Dipping Dike. Earth Science—Journal of China University of Geosciences, 22(1): 81-85 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX701.015.htm
      Hood, P.J., Teskey, D.J., 1989. Aeromagnetic Gradiometer Program of the Geological Survey of Canada. Geophysics, 54(8): 1012-1022. doi: 10.1190/1.1442726
      Hood, P., McClure, D.J., 1965. Gradient Measurements in Ground Magnetic Prospecting. Geophysics, 30(3): 403-410. doi: 10.1190/1.1439592
      Huang, L.P., Guan, Z.N., 1998. Discussion on "Magnetic Interpretation Using the 3-D Analytic Signal". Geophysics, 63(2): 667-670. doi: 10.1190/1.1444366
      Fairhead, J.D., Green, C.M., 2004. New Insights into Magnetic Derivatives for Structural Mapping. The Leading Edge, 23(2): 116-119. doi: 10.1190/1.1651454
      Li, X., 2006. Understanding 3D Analytic Signal Amplitude. Geophysics, 71(2): L13-L16. doi: 10.1190/1.2184367
      Liu, J.L., Li, Q.C., Zhao, B., 2007. New Detection Techniques of Geologic Boundaries Using Potential-Field Data and Its Application in the Shanxi Paleo-Structure Zone and Faults. Journal of Engineering Geology, 15(4): 569-574(in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2007.04.024
      Liu Y.P., Wang Z.W., Du X.J., et al., 2012. Boundary Detection Method and Its Application in Hulin Basin. Journal of Jilin University(Earth Science Edition), 42(Suppl. 3): 271-278(in Chinese with English abstract). http://www.researchgate.net/publication/292293862_Boundary_detection_method_and_its_application_in_Hulin_Basin
      Ma, G.Q., Huang, D.N., Yu, P., et al., 2012. Application of Improved Balancing Filters to Edge Identification of Potential Field Data. Chinese Journal of Geophysics, 55(12): 4288-4295(in Chinese with English abstract). doi: 10.6038/j.issn.0001-5733.2012.12.040
      Ma, G.Q., Li, L.L., 2012. Edge Detection in Potential Fields with the Normalized Total Horizontal Derivative. Computers & Geosciences, 41: 83-87. doi: 10.1016/j.cageo.2011.08.016
      Miller, H.G., Singh, V., 1994. Potential Field Tilt—A New Concept for Location of Potential Field Sources. Journal of Applied Geophysics, 32(2-3): 213-217. doi: 10.1016/0926-9851(94)90022-1
      Nabighian, M.N., 1972. The Analytic Signal of Two-Dimensional Magnetic Bodies with Polygonal Cross-Section: Its Properties and Use for Automated Anomaly Interpretation. Geophysics, 37(3): 507-517. doi: 10.1190/1.1440276
      Roest, W.R., Verhoef, J., Pilkington, M., 1992. Magnetic Interpretation Using the 3-D Analytic Signal. Geophysics, 57(1): 116-125. doi: 10.1190/1.1443174
      Sykes, M.P., Das, U.C., 2000. Directional Filtering for Linear Feature Enhancement in Geophysical Maps. Geophysics, 65(6): 1758-1768. doi: 10.1190/1.1444860
      Wang, W.Y., 2012. Spatial Variation Law of the Extreme Value Position of Analytical Signal Amplitude for Potential Field Data. Chinese Journal of Geophysics, 55(4): 1288-1299(in Chinese with English abstract). doi: 10.6038/j.issn.0001-5733.2012.04.024
      Wang, W.Y., Qiu, Z.Y., Yang, Y., et al., 2010. Some Advances in the Edge Recognition of the Potential Field. Progress in Geophysics, 25(1): 196-210(in Chinese with English abstract). doi: 10.3969/j.issn.1004-2903.2010.01.027
      Wang, Y.G., Wang, Z.W., Zhang, F.X., et al., 2012. Edge Detection of Potential Field Based on Normalized Vertical Gradient of Mean Square Error Ratio. Journal of China University of Petroleum, 36(2): 86-90, 96(in Chinese with English abstract). doi: 10.3969/j.issn.1673-5005.2012.02.014
      Xia, L.Y., Wu, H.N., Bai, G.J., et al., 2008. Research on Enhancing Weak Signal Technology and Recognition of Linear Structures Using Aerial-Magnetic Data in the Qaidam Basin. Progress in Geophysics, 23(4): 1058-1062(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ200804008.htm
      Yu, Q.F., Lou, H., 1994. Locating the Boundaries of Magnetic or Gravity Sources Using Horizontal Gradient Anomalies. Computing Techniques for Geophysical and Geochemical Exploration, 16(4): 363-367 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTHT404.013.htm
      Zhang, H.L., Liu, T.Y., Yang, Y.S., 2011. Calculation of Gravity and Magnetic Source Boundary Based on Anisotropy Normalized Variance. Chinese Journal of Geophysics, 54(7): 1921-1927(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2011.07.026
      Zhao, X.G., Wu, H.N., Bai, G.J., et al., 2008. Magnetic and Gravity Data Processing Method and Imaging Techniques for Faulted Structure Interpretation. Progress in Geophysics, 23(2): 414-421(in Chinese with English abstract). http://www.oalib.com/paper/1697990
      陈建国, 肖凡, 常韬, 2011. 基于二维经验模态分解的重磁异常分离. 地球科学——中国地质大学学报, 36(2): 327-335. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201102019.htm
      成秋明, 2012. 覆盖区矿产综合预测思路与方法. 地球科学——中国地质大学学报, 37(6): 1109-1125. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201206005.htm
      管志宁, 姚长利, 1997. 倾斜板体磁异常总梯度模反演方法. 地球科学——中国地质大学学报, 22(1): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX701.015.htm
      刘金兰, 李庆春, 赵斌, 2007. 位场场源边界识别新技术及其在山西古构造带与断裂探测中的应用研究. 工程地质学报, 15(4): 569-574. doi: 10.3969/j.issn.1004-9665.2007.04.024
      刘银萍, 王祝文, 杜晓娟, 等, 2012. 边界识别技术及其在虎林盆地中的应用. 吉林大学学报(地球科学版), 42(增刊3): 271-278. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S3032.htm
      马国庆, 黄大年, 于平, 等, 2012. 改进的均衡滤波器在位场数据边界识别中的应用. 地球物理学报, 55(12): 4288-4295. doi: 10.6038/j.issn.0001-5733.2012.12.040
      王万银, 2012. 位场解析信号振幅极值位置空间变化规律研究. 地球物理学报, 55(4): 1288-1299. doi: 10.6038/j.issn.0001-5733.2012.04.024
      王万银, 邱之云, 杨永, 等, 2010. 位场边缘识别方法研究进展. 地球物理学进展, 25(1): 196-210. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201001029.htm
      王彦国, 王祝文, 张凤旭, 等, 2012. 基于均方差比归一化垂向梯度法的位场边界检测. 中国石油大学学报: 自然科学版, 36(2): 86-90, 96. doi: 10.3969/j.issn.1673-5005.2012.02.014
      夏玲燕, 吴汉宁, 柏冠军, 等, 2008. 柴达木盆地航磁资料微弱信息增强技术研究及在线性构造识别中的应用. 地球物理学进展, 23(4): 1058-1062. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200804008.htm
      余钦范, 楼海, 1994. 水平梯度法提取重磁源边界位置. 物探化探计算技术, 16(4): 363-367. https://www.cnki.com.cn/Article/CJFDTOTAL-WTHT404.013.htm
      张恒磊, 刘天佑, 杨宇山, 2011. 各向异性标准化方差计算重磁源边界. 地球物理学报, 54(7): 1921-1927. doi: 10.3969/j.issn.0001-5733.2011.07.026
      赵希刚, 吴汉宁, 柏冠军, 等, 2008. 重磁异常解释断裂构造的处理方法及图示技术. 地球物理学进展, 23(2): 414-421. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200802015.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(16)  / Tables(2)

      Article views (3810) PDF downloads(493) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return