• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 41 Issue 6
    Jun.  2016
    Turn off MathJax
    Article Contents
    Xu Haijun, Zhao Sutao, Wu Yun, 2016. Microstructure and Mechanism of Quartz Exsolution in Clinopyroxene. Earth Science, 41(6): 948-970. doi: 10.3799/dqkx.2016.080
    Citation: Xu Haijun, Zhao Sutao, Wu Yun, 2016. Microstructure and Mechanism of Quartz Exsolution in Clinopyroxene. Earth Science, 41(6): 948-970. doi: 10.3799/dqkx.2016.080

    Microstructure and Mechanism of Quartz Exsolution in Clinopyroxene

    doi: 10.3799/dqkx.2016.080
    • Received Date: 2016-01-25
    • Publish Date: 2016-06-15
    • Exsolution lamellae-bearing minerals preserve information on the physicochemical conditions of the precursor homogeneous host and are helpful in understanding the subduction depth as well as the processes of decompression recorded in the host rocks during exhumation. Oriented silica precipitates in clinopyroxene have been reported widely in eclogite and garnet pyroxenite from high pressure and ultrahigh pressure metamorphic terranes around the world.Most of such silica precipitates are identified as α-quartz which in part coexist with hydrous minerals such as calcic amphibole.Such oriented precipitates are elongated parallel to the c-axis of host clinopyroxene, while the long axes of quartz being either c[0001]or a[1120]. Electron backscatter diffraction (EBSD) analyses demonstrate that the majority (96%) of quartz precipitates have topotactic relationships with their host clinopyroxenes.Three types of crystallographic topotactic relationships have been identified between quartz and host clinopyroxene: (1) 50% quartz precipitates share the same orientation for the c-axes with [0001]Qz//[001]Cpx; (2) 35% quartz precipitates share the same orientation for the a-axes with [1120]Qz//[001]Cpx; and (3) 11% quartz precipitates share the same orientation for the s-planes with (1121)Qz//(100)Cpx.Other quartz axes and planes disperse in large or small girdles around the shared axes or planes.Calcic amphibole precipitates also have a strong crystallographic relationship with host clinopyroxene, i.e., (100)Amp//(100)Cpx, [010]Amp//[010]Cpx, [001]Amp//[001]Cpx, [100]Amp∧[100]Cpx≈32°. The results provide quantitative microstructural evidence supporting an exsolution origin for oriented quartz needles/rods in clinopyroxene and demonstrate that the exsolution of quartz from clinopyroxene occurred within the stability field of α-quartz rather than coesite.Integrated analyses of published high pressure and high temperature experiments show that the cation vacancy and Ca-Eskola (CaEs) component in clinopyroxene are affected by bulk chemistry, pressure and temperature. The solubility of SiO2 in clinopyroxene are sensitive to bulk chemistry, and the CaEs content in clinopyroxene at high pressure conditions is buffered by free silica phase and kyanite. The CaEs contents in clinopyroxene depend strongly on pressure, which shows rapid increase with pressure up to 6 GPa and then decrease with pressure. By contrast, the CaEs contents in clinopyroxene decrease slightly with temperature which indicates that the effect of temperature is relatively week.On the basis of the above integrated analyses on high pressure experiments and observations on mineral association and microstructural results from natural samples, we suggest that the formation mechanism of the oreiented silica in clinopyroxene is more complicated than we might initially assume. The oriented precipitates of α-quartz and calcic amphiboles in host clinopyroxene are probably formed during multi-stage mechanism involving exsolution, diffusion and exchange of multiple substances, nucleation and growth, recrystallization and some retrograded reactions, which are probably promoted by supercritical fluid or partial melting during exhumation. This study suggests that the texture of oriented quartz precipitates in clinopyroxene is neither necessary nor sufficient for UHP rocks, i. e., it cannot be used as an indisputable UHP-indicator.

       

    • loading
    • Bakun-Czubarow, N., 1992.Quartz Pseudomorphs after Coesite and Quartz Exsolutions in Eclogitic Omphacites of the Zlote Mountains in the Sudetes (SW Poland).Archiwum Mineralogiczne, 48:3-25. doi: 10.1007/s12583-010-0130-0
      Boudeulle, M., 1994.Disproportionation in Mineral Solid Solutions:Symmetry Constraints on Precipitate Orientation and Morphology.Implications for the Study of Oriented Intergrowths.Journal of Applied Crystallography, 27(4):567-573.doi: 10.1107/S0021889894000750
      Bruno, M., Compagnoni, R., Hirajima, T., et al., 2002.Jadeite with the Ca-Eskola Molecule from an Ultra-High Pressure Metagranodiorite, Dora-Maira Massif, Western Alps.Contributions to Mineralogy and Petrology, 142(5):515-519.doi: 10.1007/s004100100307
      Chen, J., Xu, Z.Q., 2005.Pargasite and Ilmenite Exsolution Texture in Clinopyroxenes from the Hujialing Garnet-Pyroxenite, Su-Lu UHP Terrane, Central China:A Geodynamic Implication.European Journal of Mineralogy, 17(6):895-903.doi: 10.1127/0935-1221/2005/0017-0895
      Chopin, C., 1984.Coesite and Pure Pyrope in High-Grade Blueschists of the Western Alps:A First Record and Some Consequences.Contributions to Mineralogy and Petrology, 86(2):107-118.doi: 10.1007/BF00381838
      Day, H.W., Mulcahy, S.R., 2007.Excess Silica in Omphacite and the Formation of Free Silica in Eclogite.Journal of Metamorphic Geology, 25(1):37-50.doi: 10.1111/j.1525-1314.2006.00677.x
      Dobrzhinetskaya, L.F., Schweinehage, R., Massonne, H. J., et al., 2002.Silica Precipitates in Omphacite from Eclogite at Alpe Arami, Switzerland:Evidence of Deep Subduction.Journal of Metamorphic Geology, 20(5):481-492.doi: 10.1046/j.1525-1314.2002.00383.x
      Dobrzhinetskaya, L.F., Wirth, R., Rhede, D., et al., 2009.Phlogopite and Quartz Lamellae in Diamond-Bearing Diopside from Marbles of the Kokchetav Massif, Kazakhstan:Exsolution or Replacement Reaction?Journal of Metamorphic Geology, 27(9):607-620.doi: 10.1111/j.1525-1314.2009.00832.x
      Dobrzhinetskaya, L.F., Faryad, S.W., 2011.Frontiers of Ultrahigh-Pressure Metamorphism:View from Field and Laboratory.In:Dobrzhinetskaya, L.F., Faryad, S.W., Wallis, S., Cuthbert, S., eds., Ultrahigh-Pressure Metamorphism:25 Years After The Discovery of Coesite And Diamond.Elsevier, London, 1-39.doi:10.1016/B978-0-12-385144-4.00020-5
      Eskola, P., 1921.On the Eclogites of Norway.Videnskaps-selskapets i Kristiana Skrifter I.Matamatisk-Naturvi-denskabelig Klasse, 8:1-118.
      Franchi, S., 1902.Ueber Feldspath-Uralitisirung der Natron-thonerde-Pyroxene aus den eklogitischen Glimmerschiefern der Gebirge von Biella (Graiische Alpen).Neues Jahrbuch für Mineralogie, Geologie und Palaeontologie, 1902:112-126 (in French). https://www.researchgate.net/publication/223579660_Eclogites_and_their_geodynamic_interpretation_A_history
      Gasparik, T., 1985.Experimental Study of Subsolidus Phase Relations and Mixing Properties of Pyroxene and Plagioclase in the System Na2O-CaO-Al2O3-SiO2.Contributions to Mineralogy and Petrology, 89(4):346-357.doi: 10.1007/BF00381556
      Gasparik, T., 1986.Experimental Study of Subsolidus Phase Relations and Mixing Properties of Clinopyroxene in the Silica-Saturated System CaO-MgO-Al2O3-SiO2.American Mineralogist, 71(5-6):686-693. https://www.researchgate.net/publication/282312774_Experimental_study_of_subsolidus_phase_relations_and_mixing_properties_of_clinopyroxene_in_the_silica-saturated_system_CaO-MgO-Al2O3-Si2O
      Gayk, T., Kleinschrodt, R., Langosch, A., et al., 1995.Quartz Exsolution in Clinopyroxene of High-Pressure Granulite from the Münchberg Massif.European Journal of Mineralogy, 7(5):1217-1220.doi: 10.1127/ejm/7/5/1217
      Green, H.W., Dobrzhinetskaya, L., Bozhilov, K.N., 2000.Mineralogical and Experimental Evidence for Very Deep Exhumation from Subduction Zones.Journal of Geodynamics, 30(1-2):61-76.doi: 10.1016/S0264-3707(99)00027-7
      Harlow, G.E., 1999.Interpretation of Kcpx and CaEs Components in Clinopyroxene from Diamond Inclusions and Mantle Samples.In:Gurney J.J., Gurney J.L., Pascoe M.D., Richardson S.H., eds., Proceedings of the Seventh International Kimberlite Conference.Red Roof Design, Cape Town, 321-331.
      Hermann, J., 2002.Experimental Constraints on Phase Relations in Subducted Continental Crust.Contributions to Mineralogy and Petrology, 143(2):219-235.doi: 10.1007/s00410-001-0336-3
      Hill, T.R., Konishi, H., Xu, H.F., 2013.Natural Occurrence of Keatite Precipitates in UHP Clinopyroxene from the Kokchetav Massif:A TEM Investigation.American Mineralogist, 98(1):187-196.doi: 10.2138/am.2013.4170
      Irifune, T., Sekine, T., Ringwood, A.E., et al., 1986.The Eclogite-Garnetite Transformation at High Pressure and Some Geophysical Implication.Earth and Planetary Science Letters, 77(2):245-256.doi: 10.1016/0012-821X(86)90165-2
      Isaacs, A.M., Brown, P.E., Valley, J.W., et al., 1981.An Analytical Electron Microscopic Study of A Pyroxene-Amphibole Intergrowth.Contributions to Mineralogy and Petrology, 77(2):115-120.doi: 10.1007/BF00636515
      Janák, M., Froitzheim, N., Lupták, B., et al., 2004.First Evidence for Ultrahigh-Pressure Metamorphism of Eclogites in Pohorje, Slovenia:Tracing Deep Continental Subduction in the Eastern Alps.Tectonics, 23, TC5014, doi: 10.1029/2004TC001641
      Katayama, I., Parkinson, C.D., Okamoto, K., et al., 2000.Supersilicic Clinopyroxene and Silica Exsolution in UHPM Eclogite and Pelitic Gneiss from the Kokchetav Massif, Kazakhstan.American Mineralogist, 85(10):1368-1374.doi: 10.2138/am-2000-1004
      Kawasaki, T., Osanai, Y., 2015.Experimental Evidence of Bulk Chemistry Constraint on SiO2 Solubility in Clinopyroxene at High-Pressure Conditions.Lithos, 226:4-16.doi: 10.1016/j.lithos.2015.01.025
      Khanukhova, L.T., Zharikov, V.A., Ishbuatov, R.A., et al., 1976.Excess silica in Solid-Solution of High-Pressure Clinopyroxenes as Shown by Experimental Study of the System CaMgSi2O6-CaAl2SiO6 at 35 Kilobars and 1 200 ℃.Trans.Doklady Akademii Nauk SSSR, Earth Sciences Section, 229:170-172. http://www.sciencedirect.com/science/article/pii/S002449371500033X
      Kihle, J., Harlov, D.E., Frigaard, ∅., et al., 2010.Epitaxial Quartz Inclusions in Corundum from A Sapphirine-Garnet Boudin, Bamble Sector, SE Norway:SiO2-Al2O3 Miscibility at High P-T Dry Granulite Facies Conditions.Journal of Metamorphic Geology, 28(7):769-784.doi: 10.1111/j.1525-1314.2010.00891.x
      Klemd, R., 2003.Ultrahigh-Pressure Metamorphism in Eclogites from the Western Tianshan High-Pressure Belt (Xinjiang, Western China)—Comment.American Mineralogist, 88(7):1153-1156. https://www.researchgate.net/publication/216831987_Ultrahigh-pressure_metamorphism_in_eclogites_from_the_western_Tianshan_high-pressure_belt_Xinjiang_western_China-Comment
      Knapp, N., Woodland, A.B., Klimm, K., 2013.Experimental Constraints in the CMAS System on the Ca-Eskola Content of Eclogitic Clinopyroxene.European Journal of Mineralogy, 25(4):579-596.doi: 10.1127/0935-1221/2013/0025-2326
      Konzett, J., Frost, D.J., Proyer, A., et al., 2008a.The Ca-Eskola Component in Eclogitic Clinopyroxene as a Function of Pressure, Temperature and Bulk Composition:An Experimental Study to 15 GPa with Possible Implications for the Formation of Oriented SiO2-Inclusions in Omphacite.Contributions to Mineralogy and Petrology, 155(2):215-228.doi: 10.1007/s00410-007-0238-0
      Konzett, J., Libowitzky, E., Hejny, C., et al., 2008b.Oriented Quartz+Calcic Amphibole Inclusions in Omphacite from the Saualpe and Pohorje Mountain Eclogites, Eastern Alps—An Assessment of Possible Formation Mechanisms based on IR-and Mineral Chemical Data and Water Storage in Eastern Alpine Eclogites.Lithos, 106(3-4):336-350.doi: 10.1016/j.lithos.2008.09.002
      Kushiro, I., 1969.Clinopyroxene Solid Solutions Formed by Reactions between Diopside and Plagioclase at High Pressures.Mineralogical Society of America, Special Publication, 2:179-191. doi: 10.1134/S0016702907060055
      Leake, B.E., 1997.Nomenclature of Amphiboles:Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names.American Mineralogist, 82(9-10):1019-1037. http://www.canmin.org/content/41/6/1355.abstract
      Liang, J.L., Sun, X.M., Xu, L., et al., 2006.Quartz Exsolution in Omphacite of Ultrahigh Pressure Metamorphic Rocks from CCSD.Acta Geologica Sinica, 80(12):1904-1910 (in Chinese with English abstract). doi: 10.1080/00206819909465184
      Liati, A., Gebauer, D., Wysoczanski, R., 2002.U-Pb SHRIMP-Dating of Zircon Domains from UHP Garnet-Rich Mafic Rocks and Late Pegmatoids in the Rhodope Zone (N Greece):Evidence for Early Cretaceous Crystallization and Late Cretaceous Metamorphism.Chemical Geology, 184(3-4):281-299.doi: 10.1016/S0009-2541(01)00367-9
      Liou, J.G., Zhang, R.Y., Ernst, W.G., et al., 1998.High-Pressure Minerals from Deeply Subducted Metamorphic Rocks.Reviews in Mineralogy and Geochemistry, 37(1):33-96. http://cat.inist.fr/?aModele=afficheN&cpsidt=9898504
      Liu, L., Zhang, J.F., Green, H.W., et al., 2007.Evidence of Former Stishovite in Metamorphosed Sediments, Implying Subduction to > 350 km.Earth and Planetary Science Letters, 263(3-4):180-191.doi: 10.1016/j.epsl.2007.08.010
      Liu, L., Yang, J.X., Zhang, J.F., et al., 2009.Exsolution Microstructures in Ultrahigh-Pressure Rocks:Progress, Controversies and Challenges.Chinese Science Bulletin, 54(10):1387-1400 (in Chinese). doi: 10.1007/s11434-009-0204-5
      Liu, X.W., Jin, Z.M., 2008.Amphibole and Albite Exsolution in Omphacite of Eclogite from Raobazhai.Bulletin of Mineralogy, Petrology and Geochemistry, 27:379-380 (in Chinese). https://www.researchgate.net/publication/292769927_The_exsolution_of_clinoenstatite_and_quartz_in_diopside_from_garnet_pyroxenite_in_northern_Dabie
      Liu, Y.C., Gu, X.F., Chen, Z.Y., 2009.Breakdown Textures and Ultrahigh Pressure Metamorphism of the Eclogites from the Luotian Dome in the North Dabie Complex.Chinese Journal of Geology, 44(1):202-212 (in Chinese with English abstract). https://www.researchgate.net/publication/288738680_Breakdown_textures_and_ultrahigh-pressure_metamorphism_of_the_eclogites_from_the_Luotian_Dome_in_the_North_Dabie_Complex
      Liu, Y.C., Gu, X.F., Rolfo, F., et al., 2011.Ultrahigh-Pressure Metamorphism and Multistage Exhumation of Eclogite of the Luotian Dome, North Dabie Complex Zone (Central China):Evidence from Mineral Inclusions and Decompression Textures.Journal of Asian Earth Sciences, 42(4):607-617.doi: 10.1016/j.jseaes.2010.10.016
      Mao, H.K., 1971.The System Jadeite (NaAlSi2O6)-Anorthite (CaAl2Si2O8) at High Pressures.Year book-Carnegie Institution of Washington, 69:163-168. https://www.researchgate.net/publication/286316481_Pressure_dependence_of_self-diffusion_in_NaAlSi3O8_melt_A_molecular_dynamics_study
      McCormick, T.C., 1986.Crystal-Chemical Aspects of Nonstoichiometric Pyroxenes.American Mineralogist, 71(11-12):1434-1440. https://www.researchgate.net/publication/279559395_Crystal-chemical_aspects_of_nonstoichiometric_pyroxenes
      McNamara, D.D., Wheeler, J., Pearce, M., et al., 2012.Fabrics Produced Mimetically during Static Metamorphism in Retrogressed Eclogites from the Zermatt-Saas Zone, Western Italian Alps.Journal of Structural Geology, 44:167-178.doi: 10.1016/j.jsg.2012.08.006
      Milholland, C.S., Presnall, D.C., 1998.Liquidus Phase Relations in the CaO-MgO-Al2O3-SiO2 System at 3.0 GPa:The Aluminous Pyroxene Thermal Divide and High-Pressure Fractionation of Picritic and Komatiitic Magmas.Journal of Petrology, 39(1):3-27.doi: 10.1093/petroj/39.1.3
      Miller, C., Mundil, R., Thöni, M., et al., 2005.Refining the Timing of Eclogite Metamorphism:A Geochemical, Petrological, Sm-Nd and U-Pb Case Study from the Pohorje Mountains, Slovenia (Eastern Alps).Contributions to Mineralogy and Petrology, 150(1):70-84.doi: 10.1007/s00410-005-0004-0
      Mori, T., Green, D.H., 1976.Subsolidus Equilibria between Pyroxenes in the CaO-MgO-SiO2 System at High Pressures and Temperatures.American Mineralogist, 61:616-625. https://www.researchgate.net/profile/David_Green11/publication/236383966_Subsolidus_equilibria_between_pyroxenes_in_the_CaO-MgO-SiO2_system_at_high_pressures_and_temperatures/links/00b7d52531d4e9bc68000000.pdf?origin=publication_detail
      Ono, S., Yasuda, A., 1996.Compositional Change of Majoritic Garnet in a MORB Composition from 7 to 17 GPa and 1 400 to 1 600 ℃.Physics of the Earth and Planetary Interiors, 96(2-3):171-179.doi: 10.1016/0031-9201(96)03149-4
      Page, F.Z., Essene, E.J., Mukasa, S.B., 2003.Prograde and Retrograde History of Eclogites from the Eastern Blue Ridge, North Carolina, USA.Journal of Metamorphic Geology, 21(7):685-698.doi: 10.1046/j.1525-1314.2003.00479.x
      Page, F.Z., Essene, E.J., Mukasa, S.B., 2005.Quartz Exsolution in Clinopyroxene Is Not Proof of Ultrahigh Pressures:Evidence from Eclogites from the Eastern Blue Ridge, Southern Appalachians, U.S.A.American Mineralogist, 90(7):1092-1099.doi: 10.2138/am.2005.1761
      Papike, J.J., Ross, M., Clark, J.R., 1969.Crystal Chemical Characterization of Amphiboles based on Five New Structure Determinations.Mineralogical Society of America Special Paper, 2:117-136. http://www.sciencedirect.com/science/article/pii/0024493773900868
      Prior, D.J., Boyle, A.P., Brenker, F., et al., 1999.The Application of Electron Backscatter Diffraction and Orientation Contrast Imaging in the SEM to Textural Problems in Rocks.American Mineralogist, 84(11-12):1741-1759. doi: 10.2138/am-1999-11-1204
      Proyer, A., Habler, G., Abart, R., et al., 2013.TiO2 Exsolution from Garnet by Open-System Precipitation:Evidence from Crystallographic and Shape Preferred Orientation of Rutile Inclusions.Contributions to Mineralogy and Petrology, 166(1):211-234.doi: 10.1007/s00410-013-0872-7
      Proyer, A., Krenn, K., Hoinkes, G., 2009.Oriented Precipitates of Quartz and Amphibole in Clinopyroxene of Metabasites from the Greek Rhodope:A Product of Open System Precipitation during Eclogite-Granulite-Amphibolite Transition.Journal of Metamorphic Geology, 27(9):639-654.doi: 10.1111/j.1525-1314.2009.00844.x
      Proyer, A., McCammon, C., Dachs, E., 2004.Pitfalls in Geothermobarometry of Eclogites:Fe3+ and Changes in the Mineral Chemistry of Omphacite at Ultrahigh Pressures.Contributions to Mineralogy and Petrology, 147(3):305-318.doi: 10.1007/s00410-004-0554-6
      Safonov, O.G., Perchuk, L.L., Litvin, Y.A., et al., 2005.Phase Relations in the CaMgSi2O6-KAlSi3O8 Join at 6 and 3.5 GPa as a Model for Formation of Some Potassium-Bearing Deep-Seated Mineral Assemblages.Contributions to Mineralogy and Petrology, 149(3):316-337.doi: 10.1007/s00410-005-0651-1
      Shau, Y. H., Tsai, H. C., Liu, Y. H., et al., 2005.Transmission Electron Microscopic Study of Quartz Rods with Intergrown Amphibole within Omphacite in Eclogites from the Sulu Ultrahigh-Pressure Metamorphic Terrane, Eastern China.7th International Eclogite Conference, Leibnitz, 150:139.
      Smith, D.C., 1984.Coesite in Clinopyroxene in the Caledonides and Its Implications for Geodynamics.Nature, 310(5979):641-644.doi: 10.1038/310641a0
      Smith, D.C., 1988.A Review of the Peculiar Mineralogy of the "Norwegian Coesite-Eclogite Province", with Crystal-Chemical, Petrological, Geochemical and Geodynamical Notes and an Extensive Bibliography.In:Smith, D.C., ed., Eclogites and Eclogite-Facies Rocks, Developments in Petrology.Elsevier, Amsterdam.
      Smith, D.C., 2006.The SHAND Quaternary System for Evaluating the Supersilicic or Subsilicic Crystal-Chemistry of Eclogite Minerals, and Potential New UHPM Pyroxene and Garnet End-Members.Mineralogy and Petrology, 88(1-2):87-122.doi: 10.1007/s00710-006-0151-7
      Smith, D.C., Cheeney, R.F., 1980.Oriented Needles of Quartz in Clinopyroxene:Evidence for Exsolution of SiO2 from a Non-Stoichiometric Supersilicic "Clinopyroxene".26th International Geological Congress, Paris.
      Smith, P.P.K., 1977.An Electron Microscopic Study of Amphibole Lamellae in Augite.Contributions to Mineralogy and Petrology, 59(3):317-322.doi: 10.1007/BF00374560
      Smyth, J.R., 1980.Cation Vacancies and the Crystal Chemistry of Breakdown Reactions in Kimberlitic Omphacite.American Mineralogist, 65(11-12):1185-1191. http://www.osti.gov/scitech/biblio/6636513
      Sobolev, N.V., Kuznetsova, I.K., Zyuzin, N.I., 1968.The Petrology of Grospydite Xenoliths from Zagodochnaya Kimberlite Pipe in Yakutia.Journal of Petrology, 9(2):253-280.doi: 10.1093/petrology/9.2.253
      Sobolev, N.V., Shatsky, V.S., 1990.Diamond Inclusions in Garnets from Metamorphic Rocks:A New Environment for Diamond Formation.Nature, 343(6260):742-746.doi: 10.1038/343742a0
      Su, W., You, Z.D., Wang, R.C., et al., 2001.Quartz and Clinoenstatite Exsolutions in Clinopyroxene of Garnet-Pyroxenolite from the North Dabie Mountains, Eastern China.Chinese Science Bulletin, 46(10):850-853 (in Chinese). doi: 10.1007/BF02900437
      Terry, M.P., Robinson, P., 2001.Evidence for Supersilicic Pyroxene in an UHP Kyanite Eclogite, Western Gneiss Region, Norway.Eleventh Annual V.M.Goldschmidt Conference, Hot Springs. https://www.researchgate.net/publication/216831880_Evidence_for_supersilicic_pyroxene_in_an_UHP_kyanite_eclogite_Western_Gneiss_Region_Norway
      Tsai, C.H., Liou, J.G., 2000.Eclogite-Facies Relics and Inferred Ultrahigh-Pressure Metamorphism in the North Dabie Complex, Central-Eastern China.American Mineralogist, 85(1):1-8.doi: 10.2138/am-2000-0101
      Tsai, H.C., 2005.Mineral Precipitates in Eclogites from Donghai in the Sulu Ultrahigh-Pressure Province, Eastern China (Dissertation).National Sun Yat-sen University, Gaoxiong:46-103 (in Chinese with English abstract). http://www.openthesis.org/documents/Mineral-precipitates-in-eclogites-from-232203.html
      Vogel, D.E., 1966.Nature and Chemistry of the Formation of Clinopyroxene-Plagioclase Symplectite from Omphacite.Neues Jahrbuch für Mineralogie-Monatshefte, 6:185-189. doi: 10.1007/BF01829368
      Wang, L., Jin, Z.M., He, M.C., 2003.Raman Spectrum Study on Quartz Exsolution in Omphacite from Eclogite and Its Tectonic Significances.Earth Science, 28(2):143-150 (in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zddy200302002&dbname=CJFD&dbcode=CJFQ
      Wenk, H.R., Chen, K., Smith, R., 2011.Morphology and Microstructure of Magnetite and Ilmenite Inclusions in Plagioclase from Adirondack Anorthositic Gneiss.American Mineralogist, 96(8-9):1316-1324.doi: 10.2138/am.2011.3760
      Wood, B.J., Henderson, C.M.B., 1978.Composition and Unit-Cell Parameters of Synthetic Non-Stoichiometric Tschermakitic Clinopyroxenes.American Mineralogist, 63(1-2):66-72. http://ammin.geoscienceworld.org/content/63/1-2/66
      Xu, H.J., Jin, S.Y., Zheng, B.R., 2007.New Technique of Petrofabric:Electron Backscatter Diffraction (EBSD).Geoscience, 21(2):213-225 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200702006.htm
      Xu, H.J., Zhang, J.F., Zong, K.Q., et al., 2015.Quartz Exsolution Topotaxy in Clinopyroxene from the UHP Eclogite of Weihai, China.Lithos, 226:17-30.doi: 10.1016/j.lithos.2015.02.010
      Xu, S.T., Su, W., Liu, Y.C., et al., 1992.Diamond from the Dabie Shan Metamorphic Rocks and Its Implication for Tectonic Setting.Science, 256(5053):80-82.doi: 10.1126/science.256.5053.80
      Yamaguchi, Y., Akai, J., Tomita, K., 1978.Clinoamphibole Lamellae in Diopside of Garnet Lherzolite from Alpe Arami, Bellinzona, Switzerland.Contributions to Mineralogy and Petrology, 66(3):263-270.doi: 10.1007/BF00373410
      You, Z.D., Zhong, Z.Q., Suo, S.T., 2007.The Mineralogical Criteria for Ultra-High Pressure Metamorphism.Geoscience, 21(2):195-202 (in Chinese with English abstract). https://en.wikipedia.org/wiki/Ultra-high-pressure_metamorphism
      Zhang, J.F., Xu, H.J., Liu, Q., et al., 2011a.Pyroxene Exsolution Topotaxy in Majoritic Garnet from 250 to 300 km Depth.Journal of Metamorphic Geology, 29(7):741-751.doi: 10.1111/j.1525-1314.2011.00939.x
      Zhang, Z.M., Shen, K., Liou, J.G., et al., 2011b.Fluid-Rock Interactions during UHP Metamorphism:A Review of the Dabie-Sulu Orogen, East-Central China.Journal of Asian Earth Sciences, 42(3):316-329.doi: 10.1016/j.jseaes.2011.02.002
      Zhang, L.F., Ellis, D.J., Jiang, W.B., 2002.Ultrahigh-Pressure Metamorphism in Western Tianshan, China:Part Ⅰ.Evidence from Inclusions of Coesite Pseudomorphs in Garnet and from Quartz Exsolution Lamellae in Omphacite in Eclogites.American Mineralogist, 87(7):853-860.doi: 10.2138/am-2002-0707
      Zhang, L.F., Song, S.G., Liou, J.G., et al., 2005.Relict Coesite Exsolution in Omphacite from Western Tianshan Eclogites, China.American Mineralogist, 90(1):181-186.doi: 10.2138/am.2005.1587
      Zhang, R.Y., Liou, J.G., 1999.Exolution Lamellae in Minerals from Ultrahigh-Pressure Rocks.International Geology Review, 41:981-993.doi: 10.1080/00206819909465184
      Zhang, Z.M., Shen, K., Liou, J.G., et al., 2007.Fluid Inclusions Associated with Exsolved Quartz Needles in Omphacite of UHP Eclogites, Chinese Continental Scientific Drilling Main Drill Hole.International Geology Review, 49(5):479-486.doi: 10.2747/0020-6814.49.5.479
      Zhao, S.T, Nee, P., Green, H.W., et al., 2011.Ca-Eskola Component in Clinopyroxene:Experimental Studies at High Pressures and High Temperatures in Multianvil Apparatus.Earth and Planetary Science Letters, 307(3-4):517-524.doi: 10.1016/j.epsl.2011.05.026
      Zharikov, V.A., Ishbulatov, R.A., Chudinovskikh, L.T., 1984.High Pressure Clinopyroxenes and the Eclogite Barrier.Soviet Geology and Geophysics, 25:53-61. https://www.mindat.org/min-7630.html
      Zheng, Y.F., Zhang, L.L., Liu, L., et al., 2013.Progress in the Study of Continental Deep Subduction and Ultrahigh Pressure Metamorphism.Bulletin of Mineralogy, Petrology and Geochemistry, 32(2):135-158 (in Chinese with English abstract). http://www.eurekalert.org/pub_releases/2013-09/scp-scp091113.php
      Zhu, Y.F., Ogasawara, Y., 2002.Phlogopite and Coesite Exsolution from Super-Silicic Clinopyroxene.International Geology Review, 44(9):831-836.doi: 10.2747/0020-6814.44.9.831
      梁金龙, 孙晓明, 徐莉, 等, 2006.CCSD超高压变质岩绿辉石中的石英出溶体及其大陆动力学意义.地质学报, 80(12): 1904-1910. doi: 10.3321/j.issn:0001-5717.2006.12.013
      刘良, 杨家喜, 章军锋, 等, 2009.超高压岩石中矿物显微出溶结构研究进展、面临问题与挑战.科学通报, 54(10): 1387-1400. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200910011.htm
      刘祥文, 金振民, 2008.饶拔寨榴辉岩绿辉石中镁铁闪石及单斜钠长石出溶体.矿物岩石地球化学通报, 27: 379-380. doi: 10.3969/j.issn.1007-2802.2008.z1.203
      刘贻灿, 古晓锋, 陈振宇, 2009.北大别罗田榴辉岩的减压出溶结构与超高压变质作用.地质科学, 44(1): 202-212. http://cdmd.cnki.com.cn/Article/CDMD-10358-1013178601.htm
      苏文, 游振东, 王汝成, 等, 2001.大别山北部石榴辉石岩透辉石中石英和单斜顽火辉石的出溶.科学通报, 46(10): 850-853. doi: 10.3321/j.issn:0023-074X.2001.10.015
      蔡宪璋, 2005. 中国苏鲁超高压变质带东海地区榴辉岩之矿物析出物研究(硕士学位论文). 高雄: 国立中山大学, 46-103.
      王璐, 金振民, 何谋春, 2003.榴辉岩中石英出溶体的拉曼光谱学研究及其构造意义.地球科学, 28(2): 143-150. http://earth-science.net/WebPage/Article.aspx?id=1227
      徐海军, 金淑燕, 郑伯让, 2007.岩石组构学研究的最新技术——电子背散射衍射(EBSD).现代地质, 21(2): 213-225. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200702006.htm
      游振东, 钟増球, 索书田, 2007.论超高压变质的矿物学标志.现代地质, 21(2): 195-202. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200702004.htm
      郑永飞, 张立飞, 刘良, 等, 2013.大陆深俯冲与超高压变质研究进展.矿物岩石地球化学通报, 32(2): 135-158. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201302001.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)

      Article views (5846) PDF downloads(42) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return