• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 41 Issue 7
    Jul.  2016
    Turn off MathJax
    Article Contents
    Meng Yuanku, Xu Zhiqin, Ma Shiwei, Yang Feifei, Ma Xuxuan, 2016. Deformational Characteristics and Geochronological Constraints of Quxu Ductile Shear Zone in Middle Gangdese Magmatic Belt, South Tibet. Earth Science, 41(7): 1081-1098. doi: 10.3799/dqkx.2016.090
    Citation: Meng Yuanku, Xu Zhiqin, Ma Shiwei, Yang Feifei, Ma Xuxuan, 2016. Deformational Characteristics and Geochronological Constraints of Quxu Ductile Shear Zone in Middle Gangdese Magmatic Belt, South Tibet. Earth Science, 41(7): 1081-1098. doi: 10.3799/dqkx.2016.090

    Deformational Characteristics and Geochronological Constraints of Quxu Ductile Shear Zone in Middle Gangdese Magmatic Belt, South Tibet

    doi: 10.3799/dqkx.2016.090
    • Received Date: 2015-08-07
    • Publish Date: 2016-07-15
    • The systematic kinematic and dynamic researches of Jigong-Sefu ductile shear zone not only have theoretical significance for the orogenic tectonics, but also advance geological studies of the middle-southern segments of the Tibetan plateau. Quxu ductile shear zone, a vital part of geological structures of Quxu batholith in Gangdese magmatic belt, has experienced large-scale structural deformations featuring with ductile strike-slip shearing, predominantly of dextral shearing since Cenozoic (top to the east). Based on outcrop observations of structural schist, protomylonite, mylonite and felsic veins and thin section analyses as well as quartz EBSD fabric testing, one stage of ductile deformation was identified in the Quxu shear zone. It is found by mineral deformation geothermometer of quartz-feldspar and quartz EBSD fabric analyses that the shear zone is characterized by middle temperature deformations with 500-550 ℃ (from high greenschist facies to amphibolite facies). Structural deformation of the Quxu shear zone observed in South Tibet reveals that the asymmetric folds, structural lenses, σ porphyroclast, S-C fabrics and boudinages are good indicators, which suggest a dextral strike-slip shearing. Average values of 34 mylonitic foliations and 9 stretching lineation are 355°∠70° and 95°∠8°. Moreover, two kinds of granitic veins were identified in the Quxu shear zone. Combined with field occurrence, microstructures, zircon CL features and geochemistry of the felsic veins, we interpret that the two kinds of granitic veins are syn-tectonic shearing intrusions, whose ages can make an accurate geochronological constraint on the formation of the Quxu shear zone. LA-ICP-MS zircon dating of the granitic veins yields ages of 38.67±0.88 Ma and 35.05±0.29 Ma, respectively, further indicating that the Quxu shear zone started at 35-38 Ma (Priabonian stage of Eocene). The shearing time is consistent with that of the late stage of the Indian-Asian plate collision. Therefore, it is concluded that the Quxu shear zone might be related to continuous northward subduction of the Indian plate, corresponding to tectonic stress relation and an intra-continental deformation event.

       

    • loading
    • Black, L.P., Gulson, B.L., 1978.The Age of the Mud Tank Carbonatite, Strangways Range, Northern Territory.BMR Journal of Australian Geology and Geophysics, 3(3):227-232. https://www.researchgate.net/publication/301347326_The_age_of_the_Mud_Tank_carbonatite_Strangways_range_Northern_Territory
      Borges, F.S., White, S.H., 1980.Micro Structural and Chemical Studies of Sheared Anorthosites, Roneval, South Harris.Journal of Structural Geology, 2(1-2):237-280.doi: 10.1016/0191-8141(80)90060-7
      Boynton, W.V., 1984.Geochemistry of the Rare Earth Elements:Meteorite Studies.In:Henderson, P., ed., Rare Earth Element Geochemistry.Elsevier, Amsterdam, 63-114. http://www.oalib.com/references/19195779
      Chang, C.F., Zheng, X.L., 1973.Tectonic Features of the Mount Jolmolungma Region in Southern Tibet, China.Scientia Geologica Sinica, 8(1):1-12 (in Chinese).
      Chen, W.J., Li, Q., Hao, J., et al., 1999.Postcrystallization Thermal Evolution History of Gangdese Batholithic Zone and Its Tectonic Implication.Science in China (Series D), 42(1):37-44. doi: 10.1007/BF02878496
      Chu, M.F., Chung, S.L., Song, B., et al., 2006.Zircon U-Pb and Hf Isotope Constraints on the Mesozoic Tectonics and Crustal Evolution of Southern Tibet.Geology, 34(9):745-748.doi: 10.1130/G22725.1
      Chung, S.L., Liu, D., Ji, J., et al., 2003.Adakites from Continental Collision Zones:Melting of Thickened Lower Crust beneath Southern Tibet.Geology, 31(11):1021-1024.doi: 10.1130/G19796.1
      Debon, F., LeFort, P., Sheppard, S.M., 1986.The Four Plutonic Belts of the Transhimalaya-Himalaya:A Chemical, Mineralogical, Isotopic, and Chronological Synthesis along a Tibet-Nepal Section.Journal of Petrology, 27(1):219-250.doi: 10.1093/petrology/27.1.219
      Drury, M.R., Urai, J.L., 1990.Deformation-Related Recrystallization Processes.Tectonophysics, 172:235-253.doi: 10.1016/0040-1951(90)90033-5
      Griffin, W.L., Belousova, E.A., Shee, S.R., et al., 2004.Archean Crustal Evolution in the Northern Yilgarn Craton:U-Pb and Hf-Isotope Evidence from Detrital Zircons.Precambrian Research, 131(3):231-282.doi: 10.1016/j.precamres.2003.12.011
      Hanmer, S., 1990.Natural Rotated Inclusions in Non-Ideal Shear.Tectonophysics, 176(3-4):245-255.doi: 10.1016/0040-1951(90)90072-G
      Harris, N.B.W., Xu, R.H., Lewis, C.L., et al., 1988.Isotope Geochemistry of the 1985 Tibet Geotraverse, Lhasa to Golmud.Philssophical Transactions of the Royal Society of London, 327(1594):263-285. doi: 10.1098/rsta.1988.0129
      Harrison, T.M., Copeland, P., Kidd, W.S.F., et al., 1992.Raising Tibet.Science, 255(5052):1663-1670.doi:10.1126science.255.5052.1663
      Hirth, G., Tullis, J., 1992.Dislocation Creep Regimes in Quartz Aggregates.Journal of Structural Geology, 14(2):145-159.doi: 10.1016/0191-8141(92)90053-Y
      Hoskin, P.W.O., Schaltegger, U., 2003.The Composition of Zircon and Igneous and Metamorphic Petrogenesis.Reviews in Mineralogy and Geochemistry, 53(1):27-62.doi: 10.2113/0530027
      Hou, Z.Q., Pan, G.T., Wang, A.J., et al., 2006.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅱ.Mineralization in Late-Collisional Transformation Setting.Mineral Deposits, 25(5):521-543 (in Chinese with English abstract). https://www.researchgate.net/publication/284229515_Metallogenesis_in_Tibetan_collisional_orogenic_belt_Ⅱ_Mineralization_in_late-collisional_transformation_setting?ev=auth_pub
      Hou, Z.Q., Zheng, Y.C., Yang, Z.M., et al., 2012.Metallogenesis of Continental Collision Setting:Part Ⅰ.Gangdese Cenozoic Porphyry Cu-Mo System in Tibet.Mineral Deposits, 31(4):647-670 (in Chinese with English abstract). https://www.researchgate.net/publication/284610053_Metallogenesis_of_continental_collision_setting_Part_Ⅰ_Gangdese_Cenozoic_porphy_Cu-Mo_systems_in_Tibet
      Hu, J.R., 1995.Deformation Features of Ductile Shear Belt in Qushui County.Tibetan Geology, (1):99-109 (in Chinese with English abstract).
      Hu, L., Liu, J.L., Ji, M., et al., 2009.Microstructural Deformation Identity Handbook.Geological Publishing House, Beijing (in Chinese).
      Jackson, S.E., Pearson, N.J., Griffin, W.L., et al., 2004.The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to In-Situ U-Pb Zircon Geochronology.Chemical Geology, 211(1):47-69.doi: 10.1016/j.chemgeo.2004.06.017
      Ji, W.Q., Wu, F.Y., Chung, S.L., et al., 2009.Geochronology and Petrogenesis of Granitic Rocks in Gangdese Batholith, Southern Tibet.Science in China (Series D), 52(9):1240-1261.doi: 10.1007/s11430-009-0131-y
      Ji, W.Q., Wu, F.Y., Liu, C.Z., et al., 2012.Early Eocene Crustal Thickening in Southern Tibet:New Age and Geochemical Constraints from the Gangdese Batholith.Journal of Asian Earth Sciences, 53:82-95.doi: 10.1016/j.jseaes.2011.08.020
      Jin, C.W., Zhou, Y.S., 1978.Igneous Rock Belts in the Himalayas and the Gangdese Arc and Their Genetic Model.Scientia Geologica Sinica, 13(4):297-312 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX197804000.htm
      Kapp, P., Decelles, P.G., Leier, A.L., et al., 2007.The Gangdese Retroarc Thrust Belt Revealed.GSA Today, 17(7):4-9.doi: 10.1130/GSAT01707A.1
      Li, H.B., 2001.The Formation Age of Altyn Tagh Fault Zone and the Contribution of Its Strike-Slipping to the Uplifting of North Qinghai-Tibet Plateau (Dissertation).Chinese Academy of Geological Sciences, Beijing, 17-48 (in Chinese with English abstract).
      Li, Y.L., Wang, C.S., Dai, J.G., et al., 2015.Propagation of the Deformation and Growth of the Tibetan-Himalayan Orogen:A Review.Earth-Science Reviews, 143:36-61.doi:org/10.101016/j.earscirev.2015.01.001
      Ludwig, K.R., 2003.User's Manual for Isoplot 3.0:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, Berkeley. https://www.researchgate.net/publication/303107803_User's_manual_for_Isoplot_36_A_geochronological_toolkit_for_microsoft_excel_Berkeley_Geochronology_Center
      Maluski, H., Proust, F., Xiao, X.C., 1982.39Ar/40Ar Dating of the Trans-Himalayan Calc-Alkaline Magmatism of Southern Tibet.Nature, 298(5870):152-154.doi: 10.1038/298152a0
      Mancktelow, N.S., Pennacchioni, G., 2004.The Influence of Grain Boundary Fluids on the Microstructure of Quartz-Feldspar Mylonites.Journal of Structural Geology, 26(1):47-69.doi: 10.1016/S0191-8141(03)00081-6
      Meng, Y.K., Xu, Z.Q., Chen, X.J., et al., 2015a.Isotope Study of Alkali-Feldspar Granite Zircon in the Middle Gangdise Batholith and Its Geological Significance.Geology in China, 42(5):1202-1213 (in Chinese with English abstract). https://www.researchgate.net/publication/289541177_Isotope_study_of_alkali-feldspar_granite_zircon_in_the_middle_Gangdise_batholith_and_its_geological_significance
      Meng, Y.K., Xu, Z.Q., Chen, X.J., et al., 2015b.Zircon Geochronology and Hf Isotopic Composition of Eocene Granite Batholith from Xaitongmoin in Middle Gangdise and Its Geological Significance.Geotectonica et Metallogenia, 39(5):933-948 (in Chinese with English abstract). https://www.researchgate.net/publication/285765900_Zircon_geochronology_and_Hf_isotopic_composition_of_eocene_granite_Batholith_from_Xaitongmoin_in_middle_gangdise_and_its_geological_significance
      Mo, X.X., 2011.Magmatism and Evolution of the Tibetan Plateau.Geological Journal of China Universities, 17(3):351-367 (in Chinese with English abstract). https://www.researchgate.net/publication/281258325_Magmatism_and_evolution_of_the_Tibetan_Plateau
      Mo, X.X., Dong, G.C., Zhao, Z.D., et al., 2005.Timing of Magma Mixing in the Gangdise Magmatic Belt during the India-Asia Collision:Zircons SHRIMP U-Pb Dating.Acta Geologica Sinica, 79(1):66-76.doi: 10.1111/j.1755-6724.2005.tb00868.x
      Mo, X.X., Zhao, Z.D., Yu, X.H., et al., 2009.Cenozoic Collisional-Postcollisional Igneous Rocks in the Tibetan Plateau.Geological Publishing House, Beijing(in Chinese).
      Murphy, M.A., Yin, A., Harrison, T.M., et al., 1997.Did the Indo-Asian Collision alone Create the Tibetan Plateau? Geology, 25(8):719-722.doi: 10.1130/0091-7613(1997)
      Neil, S.M., Giorgio, P., 2004.The Influence of Grain Boundary Fluids on the Microstructure of Quartz-Feldspar Mylonites.Journal of Structural Geology, 26(1):47-69.doi: 10.1016/S0191-8141(03)00081-6
      Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006.Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution.Acta Petrologica Sinica, 22(3):521-533 (in Chinese with English abstract). https://www.researchgate.net/publication/279572099_Spatial-temporal_framework_of_the_Gangdese_Orogenic_Belt_and_its_evolution
      Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012.Tectonic Evolution of the Qinghai-Tibet Plateau.Journal of Asian Earth Sciences, 53:3-14.doi: 10.1016/j.jseaes.2011.12.018
      Pan, Y., Copeland, P., Roden, M.K., et al., 1993.Thermal and Unroofing History of the Lhasa Area, Southern Tibet—Evidence from Apatite Fission Track Thermochronology.Nuclear Tracks and Radiation Measurements, 21(4):543-554.doi: 10.1016/1359-0189(93)90195-F
      Passchier, C.W., Simpson, C., 1986.Porphyroclast Systems as Kinematic Indicators.Journal of Structural Geology, 8(8):831-843.doi: 10.1016/0191-8141(86)90029-5
      Passchier, C.W., Trouw, R.A.J., 1996.Micro-Tectonics.Springer, Berlin, 36-45.
      Paterson, S.R., Vernon, R.H., Tobisch, O.T., 1989.A Review of Criteria for the Identification of Magmatic and Tectonic Foliations in Granitoids.Journal of Structural Geology, 11(3):349-363.doi: 10.1016/0191-8141(89)90074-6
      Qi, X.X., Li, H.B., Zhang, J.X., et al., 2003.Relationship between Deformation-Metamorphism and Syntectonic Melting in a Ductile Shear Zone:A Case Study of the Baokuhe Ductile Shear Zone in the Central Qilian Mountains.Geological Review, 49(4) :413-421 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200304011.htm
      Scharer, U., Xu, R.H., Allegre, C.J., 1984.U-Pb Geochronology of Gangdese (Transhimalaya) Plutonism in the Lhasa-Xigaze Region, Tibet.Earth and Planetary Science Letters, 69(2):311-320.doi: 10.1016/0012-821X(84)90190-0
      Searle, M.P., 2006.Role of the Red River Shear Zone, Yunnan and Vietnam, in the Continental Extrusion of SE Asia.Journal of the Geological Society of London, 163(6):1025-1036.doi: 10.1144/0016-76492005-144
      Searle, M.P., Cooper, D.J.W., Rex, A.J., et al., 1988.Collision Tectonics of the Ladakh-Zan Skar Himalaya (Discussion).Philosophical Transactions, 326(1589):117-150.doi: 10.1098/rsta.1988.0082
      Stipp, M., Stünitz, H., Heilbronner, R., et al., 2002.The Eastern Tonale Fault Zone:A Natural Laboratory for Crystal Plastic Deformation of Quartz over Temperature Range from 250 to 700 ℃.Journal of Structural Geology, 24(12):1861-1884.doi: 10.1016/S0191-8141(02)00035-4
      Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19
      Tang, Y., Liu, J.L., Tran, M.D., et al., 2013.Timing of Left-Lateral Shearing along the Ailao Shan-Red River Shear Zone:Constraints from Zircon U-Pb Ages from Granitic Rocks in the Shear Zone along the Ailao Shan Range, Western Yunnan, China.International Journal of Earth Sciences, 102(3):605-626.doi: 10.1007/s00531-012-0831-y
      Tang, Y., Yin, F.G., Wang, L.Q., et al., 2013.Structural Characterization of and Geochronological Constraints on Sinistral Strike-Slip Shearing along the Southern Segment of Chongshan Shear Zone, Western Yunnan.Acta Petrologica Sinica, 29(4):1311-1324 (in Chinese with English abstract). http://www.oalib.com/paper/1474347
      Tu, G.C., Zhang, Y.Q., Zhao, Z.H., et al., 1981.Characteristics and Evolution of Granitoids of South Xizang (Tibet).Geochimica, (1):1-7 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX198101000.htm
      Tullis, J., Yund, R.A., 1991.Diffusion Creep in Feldspar Aggregates:Experimental Evidence.Journal of Structural Geology, 13(3):987-1000.doi: 10.1016/0191-8141(91)90051-J
      van Hinsbergen, D.J.J., Steinberger, B., Doubrovine, P.V., et al., 2011.Acceleration and Deceleration of India-Asia Convergence since the Cretaceous:Roles of Mantle Plumes and Continental Collision.Journal of Geophysical Research (Solid Earth), 116 (B6):100-114.doi: 10.1029/2010JB008051
      Vernon, R.H., Paterson, S.R., Geary, E.E., 1989.Evidence for Syntectonic Intrusion of Plutons in the Bear Mountains Fault Zone, California.Geology, 17(8):723-726.doi:10.1130/0091-7613(1989)017<0723:EFSIOP>2.3.CO;2
      Virginia, G.T., David, J.P., Richard, J.N., 2008.Quartz Fabrics in the Alpine Fault Mylonites:Influence of Pre-Existing Preferred Orientation on Fabric Development during Progressive Uplift.Journal of Structural Geology, 30(5):602-621.doi: 10.1016/j.jsg.2008.01.001
      Wang, M., Zhang, J.J., Qi, G.W., et al., 2014.An Early Silurian Ductile Deformation Event in the Sangshuyuanzi Shear Zone, the Southern Margin of the Central Tianshan Belt, and Its Geological Significance.Acta Petrologica Sinica, 30(10):3051-3061 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201410019.htm
      Wang, R., Richards, J.P., Zhou, L.M., et al., 2015.The Role of Indian and Tibetan Lithosphere in Spatial Distribution of Cenozoic Magmatism and Porphyry Cu-Mo Deposits in the Gangdese Belt, Southern Tibet.Earth-Science Reviews, 150:68-94.doi: 10.1016/j.earscirev.2015.07.003
      Wen, D.R., Liu, D.Y., Chung, S.L., et al., 2008a.Zircon SHRIMP U-Pb Ages of the Gangdese Batholith and Implication for Neotethyan Subduction in Southern Tibet.Chemical Geology, 252(3):191-201.doi: 10.1016/j.chemgeo.2008.03.003
      Wen, D.R., Chung, S.L., Song, B., et al., 2008b.Late Cretaceous Gangdese Intrusions of Adakitic Geochemical Characteristics, SE Tibet:Petrogenesis and Tectonic Implications.Lithos, 105(S1-2):1-11.doi: 10.1016/j.lithos.2008.02.005
      White, S.H., 1977.Geological Significance of Recovery and Recrystallization Processes in Quartz.Tectonophysics, 39(1-3):143-170.doi: 10.1016/0040-1951(77)90093-2
      Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(15):1554-1569. doi: 10.1007/BF03184122
      Wu, Y.B., Zheng, Y.F., Zhang, S.B., et al., 2007.Zircon U-Pb Ages and Hf Isotope Compositions of Migmatite from the North Dabie Terrane in China:Constraints on Partial Melting.Journal of Metamorphic Geology, 25(9):991-1009.doi: 10.1111/j.1525-1314.2007.00738.x
      Wu, Z.H., Barosh, P.J., Wu, Z.H., et al., 2008.Vast Early Miocene Lakes of the Central Tibetan Plateau.Geological Society of America Bulletin, 120(9-10):1326-1337.doi: 10.1130/B26043.1v.120no.9-10p.1326-1337
      Xiang, B.W., Zhu, G., Wang, Y.S., et al., 2007.Mineral Deformation Thermometer for Mylonitization.Advances in Earth Science, 22(2):126-135 (in Chinese with English abstract). https://www.researchgate.net/publication/297770675_Mineral_deformation_thermometer_for_mylonitization
      Xu, R.H., Jin, C.W., 1984.A Geochronological Study of the Quxu Batholith, Xizang.Scientia Geologica Sinica, (4):414-422 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX198404007.htm
      Xu, Z.Q., Wang, Q., Liang, F.H., et al., 2009.Electron Backscatter Diffraction (EBSD) Technique and Its Application to Study of Continental Dynamics.Acta Petrologica Sinica, 25(7):1721-1736 (in Chinese with English abstract). https://www.researchgate.net/publication/285907165_Electron_backscatter_diffraction_EBSD_technique_and_its_application_to_study_of_continental_dynamics?ev=auth_pub
      Xu, Z.Q, Wang, Q., Pêcher, A., et al., 2013.Orogen-Parallel Ductile Extension and Extrusion of the Greater Himalaya in the Late Oligocene and Miocene.Tectonics, 32(2):191-215. doi: 10.1002/tect.v32.2
      Xu, Z.Q., Yang, J.S., Li, H.B., et al., 2011.On the Tectonics of the India-Asia Collision.Acta Geologica Sinica, 85(1):1-33 (in Chinese with English abstract). doi: 10.1111/acgs.2011.85.issue-1
      Yin, A., Harrison, T.M., Ryerson, F.J., et al., 1994.Tertiary Structural Evolution of the Gangdese Thrust System, Southeastern Tibet.Journal of Geophysical Research, 99(9):18175-18201. doi: 10.1029/94JB00504/abstract
      Zeh, A., Gerdes, A., Barton, J.J., et al., 2010.U-Th-Pb and Lu-Hf Systematics of Zircon from TTG's Leucosomes, Meta-Anorthosites and Quartzites of the Limpopo Belt (South Africa):Constraints for the Formation, Recycling and Metamorphism of Palaeoarchaean Crust.Precambrian Research, 179(1-4):50-68.doi: 10.1016/j.precamres.2010.02.012
      Zhang, J.J., 1999.Indicators for Syntectonic Granites in Large-Scale Strike-Slip Zone.Geological Science and Technology Information, 18(4):23-26 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ199904006.htm
      Zhang, K.J., Zhang, Y.X., Tang, X.C., et al., 2012.Late Mesozoic Tectonic Evolution and Growth of the Tibetan Plateau Prior to the Indo-Asian Collision.Earth-Science Reviews, 114(3-4):236-249.doi: 10.1016/j.earscirev.2012.06.001
      Zhu, D.C., Pan, G.T., Chung, S.L., et al., 2008.SHRIMP Zircon Age and Geochemical Constraints on the Origin of Early Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese in South Tibet.International Geology Review, 50(5):442-471.doi: 10.2747/0020-6814.50.5.442
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Terrane:Record of Microcontinent and Its Histories of Drift and Growth.Earth and Planetary Science Letters, 301(1):241-255.doi: 10.1016/j.epsl.2010.11.005
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2012.Origin and Paleozoic Tectonic Evolution of the Lhasa Terrane.Geological Journal of China Universities, 18(1):1-15 (in Chinese with English abstract). https://www.researchgate.net/publication/260835521_Origin_and_Paleozoic_Tectonic_Evolution_of_the_Lhasa_Terrane
      Zou, G.S., Zhong, D.B., 1993.The Basic Features and Deformation Mechanism of Ductile Shear Zone in Qushui Area, Tibet.Geology of Jiangxi, 7(2):121-127 (in Chinese with English abstract).
      常承法, 郑錫瀾, 1973.中国西藏南部珠穆朗玛峰地区地质构造特征.地质科学, 8(1): 1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-JAXK197302006.htm
      侯增谦, 潘桂棠, 王安建, 等, 2006.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用.矿床地质, 25(5):521-543. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200605000.htm
      侯增谦, 郑远川, 杨志明, 等, 2012.大陆碰撞成矿作用:Ⅰ.冈底斯新生代斑岩成矿系统.矿床地质, 31(4):647-670. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201204003.htm
      胡敬仁, 1995.西藏曲水县色甫-科木韧性剪切带变形变质特征.西藏地质, (1): 99-109. http://www.cqvip.com/QK/97137X/199501/1918628.html
      胡玲, 刘俊来, 纪沫, 等, 2009.变形显微构造识别手册.北京:地质出版社.
      金成伟, 周云生, 1978.喜马拉雅和冈底斯弧形山系中的岩浆岩带及其成因模式.地质科学, 13(4): 297-312. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX197804000.htm
      李海兵, 2001.阿尔金断裂带形成时代及其走滑作用对青藏高原北部隆升的贡献(博士学位论文).北京:中国地质科学院, 17-48.
      孟元库, 许志琴, 陈希节, 等, 2015a.冈底斯中段碱长花岗岩锆石U-Pb-Hf同位素特征及地质意义.中国地质, 42(5):1202-1213. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201505003.htm
      孟元库, 许志琴, 陈希节, 等, 2015b.藏南冈底斯中段谢通门始新世复式岩体锆石U-Pb年代学、Hf同位素特征及其地质意义.大地构造与成矿学, 39(5):933-948. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201505017.htm
      莫宣学, 2011.岩浆作用与青藏高原演化.高校地质学报, 17(3):351-367. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201103003.htm
      莫宣学, 赵志丹, 喻学惠, 等, 2009.青藏高原新生代碰撞-后碰撞火成岩.北京:地质出版社.
      潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3): 521-533. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm
      戚学祥, 李海兵, 张建新, 等, 2003.韧性剪切带的变形变质与同构造熔融作用——以中祁连地块宝库河韧性走滑剪切带为例.地质论评, 49(4):413-421. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200304011.htm
      唐渊, 尹福光, 王立权, 等, 2013.滇西崇山剪切带南段左行走滑作用的构造特征及时代约束.岩石学报, 29(4):1311-1324. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201304017.htm
      涂光炽, 张玉泉, 赵振华, 等, 1981.西藏南部花岗岩类的特征和演化.地球化学, (1): 1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX198101000.htm
      王盟, 张进江, 戚国伟, 等, 2014.中天山南缘桑树园子剪切带早志留世韧性变形事件及其地质意义.岩石学报, 30(10):3051-3061. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201410019.htm
      向必伟, 朱光, 王勇生, 等, 2007.糜棱岩化过程中矿物变形温度计.地球科学进展, 22(2):126-135. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200702001.htm
      许荣华, 金成伟, 1984.西藏曲水岩基的时代研究.地质科学, (4):414-422. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198404007.htm
      许志琴, 王勤, 梁凤华, 等, 2009.电子背散射衍射(EBSD)技术在大陆动力学研究中的应用.岩石学报, 25(7):1721-1736. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200907016.htm
      许志琴, 杨经绥, 李海兵, 等, 2011.印度-亚洲碰撞大地构造.地质学报, 85(1):1-33. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201101001.htm
      张进江, 1999.大型走滑剪切带内同构造花岗岩的判别.地质科技情报, 18(4):23-26. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ199904006.htm
      朱弟成, 赵志丹, 牛耀龄, 等, 2012.拉萨地体的起源和古生代构造演化.高校地质学报, 18(1):1-15. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201201003.htm
      邹干生, 钟定波, 1993.西藏曲水地区韧性剪切带基本特征和变形机制.江西地质, 7(2):121-127. http://cdmd.cnki.com.cn/Article/CDMD-82501-1016056636.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(2)

      Article views (4552) PDF downloads(37) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return