• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Xi Zhenzhu, Li Ruixue, Song Gang, Zhou Sheng, 2016. Electrical Structure of Sea-Floor Hydrothermal Sulfide Deposits. Earth Science, 41(8): 1395-1401. doi: 10.3799/dqkx.2016.110
    Citation: Xi Zhenzhu, Li Ruixue, Song Gang, Zhou Sheng, 2016. Electrical Structure of Sea-Floor Hydrothermal Sulfide Deposits. Earth Science, 41(8): 1395-1401. doi: 10.3799/dqkx.2016.110

    Electrical Structure of Sea-Floor Hydrothermal Sulfide Deposits

    doi: 10.3799/dqkx.2016.110
    • Received Date: 2016-02-16
    • Publish Date: 2016-08-15
    • The deep-sea hydrothermal metallic deposits are located on seafloor at depth about several kilometers, and it is difficult to determine their shape, scale and electrical parameters, and the electrical structure based on field data remains unknown. Using research vessel "DaYang-Ⅰ", several detection tests were implemented at Atlantic ridge and Southwest Indian ridge, and the electromagnetic response data of deep-sea hydrothermal metallic sulfide deposits have been observed and analyzed. The analysis show that in the Atlantic TAG (trans-Atlantic geotraverse) hydrothermal area and Southwest Indian Ocean 49°4′E, 37°5′S hydrothermal area, deep-sea hydrothermal metallic sulfide deposits are like'mushroom' in the oceanic crust, located in the brine pool around the hydrothermal vents with lenticular structure or stratoid structure, the resistivity is about 0.1 Ω·m, the scale changes from 50 to 250 m, and the thickness is from 20 to 50 m. The diameter of hydrothermal channel ranges from 10 to 50 m, and hydrothermal alternation took place within and outside the hydrothermal channel. The resistivity of the alternation rocks is in the range of 0.2 to 0.5 Ω·m, and concentrically changes around the hydrothermal channel. Based on the shape and electrical parameters of hydrothermal metallic sulfide deposits, the ore body can be simplified as a T-shaped target for electrical structure model.

       

    • 致谢: 衷心感谢两位审稿人对本文的审阅以及提出的宝贵意见!
    • Cheesman, S.J., Edwards, R.N., Chave, A.D., 1987.On the Theory of Sea-Floor Conductivity Mapping Using Transient Electromagnetic Systems.Geophysics, 52(2):204-217.doi: 10.1190/1.1442296
      Cheesman, S.J., Edwards, R.N., Law, L.K., 1990.A Test of a Short-Baseline Sea-Floor Transient Electromagnetic System.Geophysical Journal International, 103(2):431-437.doi: 10.1111/j.1365-246X.1990.tb01782.x
      Constable, S., Srnka, L.J., 2007.An Introduction to Marine Controlled-Source Electromagnetic Methods for Hydrocarbon Exploration.Geophysics, 72(2):WA3-WA12.doi: 10.1190/1.2432483
      Cox, C.S., 1981.On the Electrical Conductivity of the Oceanic Lithosphere.Physics of the Earth and Planetary Interiors, 25(3):196-201.doi: 10.1016/0031-9201(81)90061-3
      Deng, X.G., 2007.The Deposits and Mineral Compositions of Hydrothermal Sulphides in Mid-Ocean Ridge.Geological Research of South China Sea, 54-64 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NHDZ200700009.htm
      Edwards, R.N., Law, L.K., DeLaurier, J.M., 1981.On Measuring the Electrical Conductivity of the Oceanic Crust by a Modified Magnetometric Resistivity Method.Journal of Geophysical Research, 86(B12):11609.doi: 10.1029/JB086iB12p11609
      Eidesmo, T., Ellingsrud, S., Macgregor, L.M., et al., 2002.Sea Bed Logging (SBL), a New Method for Remote and Direct Identification of Hydrocarbon Filled Layers in Deepwater Areas.First Break, 20(20):144-152. https://www.mendeley.com/research-papers/sea-bed-logging-sbl-new-method-remote-direct-identification-hydrocarbon-filled-layers-deepwater-area/
      Ellingsrud, S., Eidesmo, T., Johansen, S., et al., 2002.Remote Sensing of Hydrocarbon Layers by Seabed Logging (SBL):Results from a Cruise Offshore Angola.The Leading Edge, 21(10):972-982.doi: 10.1190/1.1518433
      Evans, R.L., Everett, M.E., 1994.Discrimination of Hydrothermal Mound Structures Using Transient Electromagnetic Methods.Geophysical Research Letters, 21(6):501-504.doi: 10.1029/94GL00418
      Key, K., Constable, S., 2002.Broadband Marine MT Exploration of the East Pacific Rise at 9°50′N.Geophysical Research Letters, 29(22):11-1-11-4.doi: 10.1029/2002GL016035
      Liu, C.S., Lin, J., 2006.Transient Electromagnetic Response Modeling of Magnetic Source on Seafloor and the Analysis of Seawater Effect.Chinese Journal of Geophysics, 49(6):1891-1898 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX200606038.htm
      Myer, D.G., Constable, S., Key, K., 2006.Electromagnetic Exploration of the Loihi Seamount.American Geophysical Union, San Francisco.
      Swidinsky, A., Hölz, S., Jegen, M., 2012.On Mapping Sea Floor Mineral Deposits with Central Loop Transient Electromagnetics.Geophysics, 77(3):171-184.doi: 10.1190/geo2011-0242.1
      Tada, N., Seama, N., Goto, T.N., et al., 2005.1-D Resistivity Structures of the Oceanic Crust around the Hydrothermal Circulation System in the Central Mariana Through Using Magnetometric Resistivity Method.Earth, Planets and Space, 57(7):673-677.doi: 10.1186/BF03351846
      Wetheim, G.K., 1954.Studies of the Electric Potential between Key West, Florida, and Havana, Cuba.Earth and Space Science News, 35(6):872-882.doi: 10.1029/TR035i006p00872
      Ye, J., 2010.Mineralization of Polymetallic Sulfides on Ultra-Slow Spreading Southwest Indian Ridge at 49.6°E (Dissertation).The Institute of Oceanology, Chinese Academy of Science, Qingdao (in Chinese with English abstract).
      Zhang, F.Y., Zhang, W.Y., Zhu, K.C., et al., 2011.Resource Estimation of Co-Rich Crusts of Seamounts in Pacific.Earth Science, 36(1):1-11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201101002.htm
      Zhou, S., Xi, Z.Z., Song, G., et al., 2012.Response of the Towed Transient Electromagnetic Sounding on Deep Seafloor.Journal of Central South University (Sicence and Technology), 43(2):605-610 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZNGD201202034.htm
      Zhu, K.C., Ren, J.B., Wang, H.F., et al., 2015.Enrichment Mechanism of REY and Geochemical Characteristics of REY-Rich Clay from the Central Pacific.Earth Science, 40(6):1052-1060 (in Chinese with English abstract).
      Богданов, Ю.A., 2007.Modern Ocean Sulphide Deposits Category.Translated by Chen B.Y., Marine Geology, (4):18-30 (in Chinese).
      邓希光, 2007.大洋中脊热液硫化物矿床分布及矿物组成.南海地质研究, 54-64. http://www.cnki.com.cn/Article/CJFDTOTAL-NHDZ200700009.htm
      刘长胜, 林君, 2006.海底表面磁源瞬变响应建模及海水影响分析.地球物理学报, 49(6): 1891-1898. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200606038.htm
      叶俊, 2010. 西南印度洋超慢速扩张脊49. 6°E热液区多金属硫化物成矿作用研究(博士学位论文). 青岛: 中国科学院海洋研究所. http://cdmd.cnki.com.cn/Article/CDMD-80068-1012411037.htm
      张富元, 章伟艳, 朱克超, 等, 2011.太平洋海山钴结壳资源量估算.地球科学, 36(1): 1-11. http://earth-science.net/WebPage/Article.aspx?id=2059
      周胜, 席振铢, 宋刚, 等, 2012.深海拖曳式瞬变电磁的响应规律.中南大学学报(自然科学版), 43(2): 605-610. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201202034.htm
      朱克超, 任江波, 王海峰, 等, 2015.太平洋中部富REY深海粘土的地球化学特征及REY富集机制.地球科学, 40(6): 1052-1060. http://earth-science.net/WebPage/Article.aspx?id=3106
      尤·阿·博格达诺夫, 2007. 大洋现代硫化物矿藏分类. 陈邦彦, 译. 海洋地质, (4): 18-30. http://www.cqvip.com/Main/Detail.aspx?id=26267471
    • Relative Articles

    • Cited by

      Periodical cited type(10)

      1. 郭志馗,陈超,陶春辉,胡正旺,许顺芳. 海底热液循环中矿物沉淀过程数值模拟. 地球科学. 2021(02): 729-742 . 本站查看
      2. 聂佐夫,陶春辉,沈金松,朱忠民. 复杂地形结构下瞬变电磁三维正演模拟——以大西洋洋中脊TAG热液区为例. 海洋学报. 2021(06): 145-156 .
      3. 李鹏,罗玉钦,田有,刘洋,鹿琪,陈常乐,刘财. 深部地质资源地球物理探测技术研究发展. 地球物理学进展. 2021(05): 2011-2033 .
      4. 杨悦,李传顺,叶俊,李兵,党院,王赛. 基于瞬变电磁法的南大西洋热液硫化物区电性结构. 中国有色金属学报. 2021(10): 2713-2721 .
      5. 柳建新,赵然,郭振威. 电磁法在金属矿勘查中的研究进展. 地球物理学进展. 2019(01): 151-160 .
      6. 底青云,朱日祥,薛国强,殷长春,李貅. 我国深地资源电磁探测新技术研究进展. 地球物理学报. 2019(06): 2128-2138 .
      7. 陈雪刚,邱中炎,段威,李小虎,叶瑛,陈镇东. 中国台湾龟山岛热液自然硫中微观包体的元素富集特征. 地球科学. 2018(05): 1549-1561 . 本站查看
      8. 赵越,许枫,李貅,刘金鹏. 中心回线海底三维瞬变电磁响应规律分析. 石油地球物理勘探. 2017(05): 1093-1102+884 .
      9. 李艳,张亮,刘少军,唐达生. 高海水围压条件下多金属硫化物的破碎机理. 中南大学学报(自然科学版). 2017(04): 944-951 .
      10. 李瑞雪,王鹤,席振铢,龙霞,侯海涛,刘愿愿,蒋欢. 深海热液硫化物矿体3D瞬变电磁正演. 地球物理学报. 2016(12): 4505-4512 .

      Other cited types(7)

    • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-06010203040
      Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 34.6 %FULLTEXT: 34.6 %META: 63.9 %META: 63.9 %PDF: 1.5 %PDF: 1.5 %FULLTEXTMETAPDF
      Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.7 %其他: 4.7 %其他: 0.4 %其他: 0.4 %China: 0.3 %China: 0.3 %Kensington and Norwood: 0.1 %Kensington and Norwood: 0.1 %Russian Federation: 0.0 %Russian Federation: 0.0 %Saitama: 0.1 %Saitama: 0.1 %[]: 0.5 %[]: 0.5 %三亚: 0.2 %三亚: 0.2 %上海: 1.4 %上海: 1.4 %东莞: 0.2 %东莞: 0.2 %乌鲁木齐: 0.0 %乌鲁木齐: 0.0 %休斯顿: 0.2 %休斯顿: 0.2 %北京: 18.4 %北京: 18.4 %南京: 0.3 %南京: 0.3 %南宁: 0.1 %南宁: 0.1 %南通: 0.1 %南通: 0.1 %台州: 0.2 %台州: 0.2 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.0 %咸阳: 0.0 %哥伦布: 0.0 %哥伦布: 0.0 %唐山: 0.1 %唐山: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %天津: 0.3 %天津: 0.3 %常州: 0.1 %常州: 0.1 %广州: 0.1 %广州: 0.1 %廊坊: 0.0 %廊坊: 0.0 %张家口: 1.5 %张家口: 1.5 %德国基尔: 0.1 %德国基尔: 0.1 %成都: 0.2 %成都: 0.2 %扬州: 0.1 %扬州: 0.1 %新乡: 0.1 %新乡: 0.1 %昆明: 0.1 %昆明: 0.1 %杭州: 3.5 %杭州: 3.5 %武汉: 1.7 %武汉: 1.7 %汕头: 0.1 %汕头: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.1 %济南: 0.1 %海口: 0.1 %海口: 0.1 %温州: 0.0 %温州: 0.0 %湖州: 0.2 %湖州: 0.2 %湘潭: 0.0 %湘潭: 0.0 %滁州: 0.0 %滁州: 0.0 %漯河: 0.4 %漯河: 0.4 %烟台: 0.1 %烟台: 0.1 %珠海: 0.1 %珠海: 0.1 %白山: 0.0 %白山: 0.0 %百色: 0.1 %百色: 0.1 %石家庄: 0.2 %石家庄: 0.2 %美国伊利诺斯芝加哥: 0.3 %美国伊利诺斯芝加哥: 0.3 %自贡: 0.1 %自贡: 0.1 %芒廷维尤: 24.0 %芒廷维尤: 24.0 %芝加哥: 0.4 %芝加哥: 0.4 %莫斯科: 1.0 %莫斯科: 1.0 %衢州: 0.2 %衢州: 0.2 %西宁: 33.6 %西宁: 33.6 %西安: 0.2 %西安: 0.2 %贵港: 0.1 %贵港: 0.1 %达尔斯: 0.1 %达尔斯: 0.1 %运城: 0.2 %运城: 0.2 %遂宁: 0.0 %遂宁: 0.0 %邯郸: 0.0 %邯郸: 0.0 %郑州: 0.4 %郑州: 0.4 %重庆: 0.1 %重庆: 0.1 %镇江: 0.1 %镇江: 0.1 %长春: 0.3 %长春: 0.3 %长沙: 1.6 %长沙: 1.6 %长野县: 0.1 %长野县: 0.1 %青岛: 0.1 %青岛: 0.1 %韩国首尔: 0.1 %韩国首尔: 0.1 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %其他其他ChinaKensington and NorwoodRussian FederationSaitama[]三亚上海东莞乌鲁木齐休斯顿北京南京南宁南通台州呼和浩特咸阳哥伦布唐山嘉兴天津常州广州廊坊张家口德国基尔成都扬州新乡昆明杭州武汉汕头洛阳济南海口温州湖州湘潭滁州漯河烟台珠海白山百色石家庄美国伊利诺斯芝加哥自贡芒廷维尤芝加哥莫斯科衢州西宁西安贵港达尔斯运城遂宁邯郸郑州重庆镇江长春长沙长野县青岛韩国首尔香港特别行政区

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)

      Article views (5828) PDF downloads(38) Cited by(17)
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return