• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 41 Issue 9
    Sep.  2016
    Turn off MathJax
    Article Contents
    Huang Yintao, Yao Guangqing, Zhou Fengde, 2016. Provenance Analysis and Petroleum Geological Significance of Shallow-Marine Gravity Flow Sandstone for Huangliu Formation of Dongfang Area in Yinggehai Basin, the South China Sea. Earth Science, 41(9): 1526-1538. doi: 10.3799/dqkx.2016.511
    Citation: Huang Yintao, Yao Guangqing, Zhou Fengde, 2016. Provenance Analysis and Petroleum Geological Significance of Shallow-Marine Gravity Flow Sandstone for Huangliu Formation of Dongfang Area in Yinggehai Basin, the South China Sea. Earth Science, 41(9): 1526-1538. doi: 10.3799/dqkx.2016.511

    Provenance Analysis and Petroleum Geological Significance of Shallow-Marine Gravity Flow Sandstone for Huangliu Formation of Dongfang Area in Yinggehai Basin, the South China Sea

    doi: 10.3799/dqkx.2016.511
    • Received Date: 2016-01-16
    • Publish Date: 2016-09-15
    • The reservoir in Upper Miocene Huangliu Formation of Yinggehai basin, which is located between Kuntum paleo-uplift and Hainan paleo-uplift, is shallow-marine gravity flow deposits with burial depth ranging from 2 600 to 3 500 m. Analyzing the provenance of the sandbody is significant in understanding its distribution and "source to sink system", hence for the oil-gas exploration and development in this area. The provenance of sediments in Upper Miocene Huangliu Formation was analyzed by integrating the components of the sandstones, assemblage styles of the heavy mineral, paleo-current direction and geochemistry characteristics of the sandstones. Results show follows. (1) There are two provenances, one from west and the other from east, in the study area. Western sourced sandstones form the shallow-marine gravity flow which are mainly sublitharenite with high feldspar (average is 6.1%) and lithic (average is 11.7%) contents, low shale content (average is 3.8%). However, eastern sourced sandstones, which are mainly subarkose-quartz siltstone with low feldspar and lithic contents with averages of 4.6% and 2.7%, respectively, high compositional maturity, high shale contents (average is 18.6%), form the neritic sand bar. (2) The shallow-marine gravity flow sandstones exhibit low zircon, tourmaline contents, and high magnetite, garnet contents, while the neritic sand bar sandstones exhibit high zircon, tourmaline and leucosphenite contents, and low magnetite, garnet contents. The direction of paleo-current in study area is from southeastward to eastward. (3) The similar rare earth element (REE) patterns of 28 sandstones from three western wells indicate that they were sourced from the same provenance. The diagrams of Th-Sc and Co/Th-La/Sc and elemental ratios of these sandstone samples show that they were derived from intermediate to felsic source rocks. The measured geochemistry data of these core samples fall into the fields of active continental margin or continental island arc in the diagrams of La-Th-Sc, Th-Sc-Zr/10, Ti/Zr-La/Sc and major element discrimination, indicating that the source rocks of the shallow-marine gravity flow sandstones were formed under the tectonic setting of an convergent environment. (4) The integrated method for provenance analysis indicates that the shallow-marine gravity flow sandstones were derived from the western Kuntum uplift. The shallow-marine gravity flow sandstones in western mud diaper belts are large in scale, rich in gas, better in reservoir properties and the main favorable exploration target towards the west, whereas the neritic sand bar sandstones in eastern mud diaper belts are small in scale, poor in reservoir quality.

       

    • loading
    • Akarish, A.I.M., El-Gohary, A.M., 2008.Petrography and Geochemistry of Lower Paleozoic Sandstones, East Sinai, Egypt:Implications for Provenance and Tectonic Setting.Journal of African Earth Sciences, 52(1-2):43-54. doi: 10.1016/j.jafrearsci.2008.04.002
      Armstrong-Altrin, J.S., Lee, Y.I., Verma, S.P., et al., 2004.Geochemistry of Sandstones from the Upper Miocene Kudankulam Formation, Southern India:Implications for Provenance, Weathering, and Tectonic Setting.Journal of Sedimentary Research, 74(2):285-297.doi: 10.1306/082803740285
      Bhatia, M.R., 1983.Plate Tectonics and Geochemical Composition of Sandstones.The Journal of Geology, 91(6):611-627.doi: 10.1086/628815
      Bhatia, M.R., 1985.Rare-Earth Element Geochemistry of Australian Paleozoic Greywackes and Mudrocks:Provenance and Tectonic Control.Sediment Geology, 45(1):97-113.doi: 10.1016/0037-0738(85)90025-9
      Bhatia, M.R., Crook, K.A.W., 1986.Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins.Contributions to Mineralogy and Petrology, 92(2):181-193.doi: 10.1007/bf00375292
      Carvajal, C., Steel, R., Petter, A., 2009.Sediment Supply:The Main Driver of Shelf-Margin Growth.Earth-Science Reviews, 96(4):221-248.doi: 10.1016/j.earscirev.2009.06.008
      Clark, M.K., Schoenbohm, L.M., Royden, L.H., et al., 2004.Surface Uplift, Tectonics, and Erosion of Eastern Tibet from Large-Scale Drainage Patterns.Tectonics, 23(1):1-20.doi: 10.1029/2002tc001402
      Clift, P.D., van Long, H.V., Hinton, R., et al., 2008.Evolving East Asian River Systems Reconstructed by Trace Element and Pb and Nd Isotope Variations in Modern and Ancient Red River-Song Hong Sediments.Geochemistry, Geophysics, Geosystems, 9(4):1-29.doi: 10.1029/2007gc001867
      Cullers, R.L., 2000.The Geochemistry of Shales, Siltstones and Sandstones of Pennsylvanian—Permian Age, Colorado, USA:Implications for Provenance and Metamorphic Studies.Lithos, 51(3):181-203.doi: 10.1016/s0024-4937(99)00063-8
      Cullers, R.L., Berendsen, P., 1998.The Provenance and Chemical Variation of Sandstones Associated with the Mid-Continent Rift System, U.S.A..European Journal of Mineralogy, 10(5):987-1002.doi: 10.1127/ejm/10/5/0987
      Dickinson, W.R., 1985.Interpreting Provenance Relations from Detrital Modes of Sandstones.Provenance of Arenites, 325:333-361.doi: 10.1007/978-94-017-2809-6_15
      El-Bialy, M.Z., 2013.Geochemistry of the Neoproterozoic Metasediments of Malhaq and Um Zariq Formations, Kid Metamorphic Complex, Sinai, Egypt:Implications for Source-Area Weathering, Provenance, Recycling, and Depositional Tectonic Setting.Lithos, 175-176:68-85.doi: 10.1016/j.lithos.2013.05.002
      Feng, R., Kerrich, R., 1990.Geochemistry of Fine-Grained Clastic Sediments in the Archean Abitibi Greenstone Belt, Canada:Implications for Provenance and Tectonic Setting.Geochimica et Cosmochimica Acta, 54(4):1061-1081.doi: 10.1016/0016-7037(90)90439-r
      Folk, R.L., 1968.Petrology of Sedimentary Rocks.Hemphill, Austin, TX, 107. https://repositories.lib.utexas.edu/handle/2152/22930
      Fu, L., Guan, P., Zhao, W.Y., et al., 2013.Heavy Mineral Feature and Provenance Analysis of Paleogene Lulehe Formation in Qaidam Basin.Acta Petrologica Sinica, 29(8):2867-2875(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201308022.htm
      Guo, L.Z., Zhong, Z.H., Wang, L.S., et al., 2001.Regional Tectonic Evloution around Yinggehai Basin of South China Sea.Geological Journal of China Universities, 7(1):1-12(in Chinese with English abstract). https://www.researchgate.net/publication/313527601_Regional_tectonic_evolution_around_Yinggehai_Basin_of_South_China_Sea
      Hao, F., Dong, W.L., Zou, H.Y., et al., 2003.Overpressure Fluid Flow and Rapid Accumulation of Natural Gas in Yinggehai Basin.Acta Petrolei Sinica, 24(6):7-12(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200306002.htm
      Hayashi, K.I., Fujisawa, H., Holland, H.D., et al., 1997.Geochemistry of ~1.9 Ga Sedimentary Rocks from Northeastern Labrador, Canada.Geochimica et Cosmochimica Acta, 61(19):4115-4137.doi: 10.1016/s0016-7037(97)00214-7
      He, W.J., Xie, J.Y., Liu, X.Y., et al., 2011.Foraminiferal Biostratigraphy and Sedimentary Environment Reconstruction Based on Paleontological Data from Bore Hole DF1-1-11, Yinggehai Basin.Journal of Stratigraphy, 35(1):81-87 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0037073816303128
      He, X.H., Zhong Z.H., Dong G.N., et al., 2015.Neogene Ocean Current in Yingqiong Basin:Implication of Deep-Water Oil and Gas Exploration.Natural Gas Exploration and Development, 38(1):4-11(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200402008.htm
      Henderson, P., 1984.Rare Earth Element Geochemistry.Elsevier, Amsterdam, 52-71. http://ci.nii.ac.jp/ncid/BA03642755
      Li, L., Yao, G.Q., Liu, Y.H., et al., 2015.Major and Trace Elements Geochemistry and Geological Implications of Dolomite-Bearing Mudstones in Lower Part of Shahejie Formation in Tanggu Area, Eastern China.Earth Science, 40(9):1480-1496 (in Chinese with English abstract). https://www.researchgate.net/publication/283873592_Major_and_trace_elements_geochemistry_and_geological_implications_of_dolomite-bearing_mudstones_in_lower_part_of_Shahejie_Formation_in_Tanggu_Area_Eastern_China
      Liao, W.L., Xiao, L., Zhang, L., et al., 2015.Provenance and Tectonic Setting of Early Carboniferous Sedimentary Strata in Western Junggar, Xinjiang.Earth Science, 40(3):485-503 (in Chinese with English abstract). https://www.researchgate.net/publication/281993457_Provenance_and_tectonic_settings_of_early_carboniferous_sedimentary_strata_in_Western_Junggar_Xinjiang
      McLennan, S.M., 1989.Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes.Mineralogical Society of America Reviews in Mineralogy, 21:169-200. http://rimg.geoscienceworld.org/content/21/1/169.short
      McLennan, S.M., Hemming, S., McDaniel, D.K., et al., 1993.Geochemical Approaches to Sedimentation, Provenance and Tectonics.In:Johnson, M.J., Basu, A., eds., Processes Controlling the Composition of Clastic Sediments.The Geological Society of America, (Special Paper 284):21-40. http://www.scirp.org/reference/ReferencesPapers.aspx?ReferenceID=1551660
      Moosavirad, S.M., Janardhana, M.R., Sethumadhav, M.S., et al., 2012.Geochemistry of Lower Jurassic Sandstones of Shemshak Formation, Kerman Basin, Central Iran:Provenance, Source Weathering and Tectonic Setting.Journal of the Geological Society of India, 79(5):483-496.doi: 10.1007/s12594-012-0073-4
      Morley, C.K., 2002.A Tectonic Model for the Tertiary Evolution of Strike-Slip Faults and Rift Basins in SE Asia.Tectonophysics, 347(4):189-215.doi: 10.1016/s0040-1951(02)00061-6
      Morton, A.C., 1987.Influences of Provenance and Diagenesis on Detrital Garnet Suites in the Paleocene Forties Sandstone, Central North Sea.SEPM Journal of Sedimentary Research, 57(6):1027-1032.doi: 10.1306/212f8cd8-2b24-11d7-8648000102c1865d
      Morton, A.C., Whitham, A.G., Fanning, C.M., 2005.Provenance of Late Cretaceous to Paleocene Submarine Fan Sandstones in the Norwegian Sea:Integration of Heavy Mineral, Mineral Chemical and Zircon Age Data.Sedimentary Geology, 182(1-4):3-28.doi: 10.1016/j.sedgeo.2005.08.007
      Nesbitt, H.W., Young, G.M., 1996.Petrogenesis of Sediments in the Absence of Chemical Weathering:Effects of Abrasion and Sorting on Bulk Composition and Mineralogy.Sedimentology, 43(2):341-358.doi: 10.1046/j.1365-3091.1996.d01-12.x
      Pang, X., Peng, D.J., Chen, C.M., et al., 2007.Three Hierarchies "Source-Conduit-Sink" Coupling Analysis of the Pearl River Deep-Water Fan System.Acta Geologica Sinica, 81(6):857-864(in Chinese with English abstract). http://csb.scichina.com:8080/EN/abstract/abstract516995.shtml
      Pei, J.X., Yu, J.F., Wang, L.F., et al., 2011.Key Challenges and Strategies for the Success of Natural Gas Exploration in Mid-Deep Strata of the Yinggehai Basin.Acta Petrolei Sinica, 32(4):573-579(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201104004.htm
      Pettijohn, F.J., Potter, P.E., Siever, R., 1987.Sand and Sandstone.2nd ed..Springer, New York.553. doi: 10.1007/978-1-4615-9974-6_6
      Rahman, M.J.J., Suzuki, S., 2007.Geochemistry of Sandstones from the Miocene Surma Group, Bengal Basin, Bangladesh:Implications for Provenance, Tectonic Setting and Wealthering.Geochemical Journal, 41(6):415-428.doi: 10.2343/geochemj.41.415
      Roser, B.P., Korsch, R.J., 1986.Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio.The Journal of Geology, 94(5):635-650.doi: 10.1086/629071
      Rudnick, R.L., Gao, S., 2003.Composition of the Continental Crust.In:Holland, H.D., Turekian, K.K., eds., Treatise on Geochemistry.Pergamon, Oxford, 1-64. https://www.deepdyve.com/lp/elsevier/the-composition-of-the-continental-crust-b6Dpwl24Ik
      Saminpanya, S., Duangkrayom, J., Jintasakul, P., et al., 2014.Petrography, Mineralogy and Geochemistry of Cretaceous Sediment Samples from Western Khorat Plateau, Thailand, and Considerations on Their Provenance.Journal of Asian Earth Sciences, 83:13-34.doi: 10.1016/j.jseaes.2014.01.007
      Sun, Z., Zhong, Z.H., Zhou, D., et al., 2006.The Development Mechanism of the South China Sea.Science China(Series D), 36(9):797-810(in Chinese). doi: 10.1175/JCLI-D-14-00170.1
      Taylor, S.R., McLennan, S.M., 1985.The Continental Crust:Its Composition and Evolution.The Journal of Geology, 94(4):57-72. http://www.osti.gov/scitech/biblio/6582885
      Tong, C.X., Wang, Z.F., Li, X.S., 2012.Pooling Conditions of Gas Reservoirs in the Dongfang 1-1 Gas Field, Yinggehai Basin.Natural Gas Industry, 32(8):11-15, 26 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG201208004.htm
      Wang, D.L., Al-Busaidi, S., Lee, D.N.H., 2009.Prediction of Sand Body Trend Based on Stratigraphic Dip Pattern from Microresistivity Images in Permian Sandstone Reservoir, Oman.SPE Saudi Arabia Section Technical Symposium, Saudi Arabia, 1-12.doi: 10.2118/126084-ms
      Wang, H., Chen, S., Gan, H.J., et al., 2015.Accumulation Mechanism of Large Shallow Marine Turbidite Deposits:A Case Study of Gravity Flow Deposits of the Huangliu Formation in Yinggehai Basin.Earth Science Frontiers, 22(1):21-34 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201501004.htm
      Wang, P.X., 1995.ODP and Qinghai/Xizang (Tibetan) Palteau.Advance in Earth Sciences, 10(3):254-257 (in Chinese with English abstract).
      Xie, Y.H., Fan, C.W., 2010.Some New Knowledge about the Origin of Huangliu Formation Reservoirs in Dongfang Area, Yinggehai Basin.China Offshore Oil and Gas, 22(6):355-359, 386 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD201006002.htm
      Xie, Y.H., Zhang, Y.Z., Li, X.S., et al., 2012.Main Controlling Factors and Formation Models of Natural Gas Reservoirs with High-Temperature and Overpressure in Yinggehai Basin.Acta Petrolei Sinica, 33(4):601-609 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201204010.htm
      Zaid, S.M., 2013.Provenance, Diagenesis, Tectonic Setting and Reservoir Quality of the Sandstones of the Kareem Formation, Gulf of Suez, Egypt.Journal of African Earth Sciences, 85:31-52.doi: 10.1016/j.jafrearsci.2013.04.010
      Zhang, H.L., Pei, J.X., Zhang, Y.Z., et al., 2013.Overpressure Reservoirs of the Huangliu Formation of the Dongfang Area, Yinggehai Basin, South China Sea.Petroleum Exploration and Development, 40(3):102-112 (in Chinese with English abstract). http://linkinghub.elsevier.com/retrieve/pii/S1876380413600373
      Zhang, Q.M., 1999.Evolution of Ying-Qiong Basin and Its Tectonic-Thermal System.Natural Gas Industry, 19(1):12-18 (in Chinese with English abstract). http://pub.chinasciencejournal.com/MarineGeology&QuaternaryGeology/42172.jhtml
      Zhao, M., Shao, L., Liang, J.S., et al., 2013.REE Character of Sediment from the Paleo-Red River and Its Implication of Provenance.Earth Science, 38(1):61-69 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX2013S1008.htm
      Zhong, Z.H., Liu, J.H., Zhang, D.J., et al., 2013.Origin and Sedimentary Reservoir Characteristics of a Large Submarine Fan in Dongfang Area, Yinggehai Basin.Acta Petrolei Sinica, 34(Suppl.2):284-293 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB2013S2013.htm
      Zimmermann, U., Bahlburg, H., 2003.Provenance Analysis and Tectonic Setting of the Ordovician Clastic Deposits in the Southern Puna Basin, NW Argentina.Sedimentology, 50(6):1079-1104.doi: 10.1046/j.1365-3091.2003.00595.x
      付玲, 关平, 赵为永, 等, 2013.柴达木盆地古近系路乐河组重矿物特征与物源分析.岩石学报, 29(8): 2867-2875. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201308022.htm
      郭令智, 钟志洪, 王良书, 等, 2001.莺歌海盆地周边区域构造演化.高校地质学报, 7(1): 1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200101000.htm
      郝芳, 董伟良, 邹华耀, 等, 2003.莺歌海盆地汇聚型超压流体流动及天然气晚期快速成藏.石油学报, 24(6): 7-12. doi: 10.7623/syxb200306002
      何卫军, 谢金有, 刘新宇, 等, 2011.莺歌海盆地DF1-1-11井有孔虫生物地层与沉积环境研究.地层学杂志, 35(1): 81-87. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201101015.htm
      何小胡, 钟泽红, 董贵能, 等, 2015.莺琼盆地新近纪海流的研究新进展及深水油气勘探的启示.天然气勘探与开发, 38(1): 4-11. http://www.cnki.com.cn/Article/CJFDTOTAL-TRKT201501003.htm
      李乐, 姚光庆, 刘永河, 等, 2015.塘沽地区沙河街组下部含云质泥岩主微量元素地球化学特征及地质意义.地球科学, 40(9): 1480-1496. http://earth-science.net/WebPage/Article.aspx?id=3152
      廖婉琳, 肖龙, 张雷, 等, 2015.新疆西准噶尔早石炭世沉积地层的物源及构造环境.地球科学, 40(3): 485-503. http://earth-science.net/WebPage/Article.aspx?id=3031
      庞雄, 彭大钧, 陈长民, 等, 2007.三级"源-渠-汇"耦合研究珠江深水扇系统.地质学报, 81(6): 857-864. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200706015.htm
      裴健翔, 于俊峰, 王立锋, 等, 2011.莺歌海盆地中深层天然气勘探的关键问题及对策.石油学报, 32(4): 573-579. doi: 10.7623/syxb201104003
      孙珍, 钟志洪, 周蒂, 等, 2006.南海的发育机制研究:相似模拟证据.中国科学(D辑), 36(9): 797-810. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200609001.htm
      童传新, 王振峰, 李绪深, 2012.莺歌海盆地东方1-1气田成藏条件及其启示.天然气工业, 32(8): 11-15, 26. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201208004.htm
      王华, 陈思, 甘华军, 等, 2015.浅海背景下大型浊积扇研究进展及堆积机制探讨:以莺歌海盆地黄流组为例.地学前缘, 22(1): 21-34. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501004.htm
      汪品先, 1995.大洋钻探与青藏高原.地球科学进展, 10(3): 254-257. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ503.008.htm
      谢玉洪, 范彩伟, 2010.莺歌海盆地东方区黄流组储层成因新认识.中国海上油气, 22(6): 355-359, 386. http://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201502015.htm
      谢玉洪, 张迎朝, 李绪深, 等, 2012.莺歌海盆地高温超压气藏控藏要素与成藏模式.石油学报, 33(4): 601-609. doi: 10.7623/syxb201204009
      张伙兰, 裴健翔, 张迎朝, 等, 2013.莺歌海盆地东方区黄流组超压储集层特征.石油勘探与开发, 40(3): 102-112. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201303006.htm
      张启明, 1999.莺琼盆地的演化与构造-热体制.天然气工业, 19(1): 12-18. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG901.003.htm
      赵梦, 邵磊, 梁建设, 等, 2013.古红河沉积物稀土元素特征及其物源指示意义.地球科学, 38(1): 61-69. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX2013S1008.htm
      钟泽红, 刘景环, 张道军, 等, 2013.莺歌海盆地东方区大型海底扇成因及沉积储层特征.石油学报, 34(增刊2): 284-293. http://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2013S2013.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(7)

      Article views (4496) PDF downloads(54) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return