• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Li Xia, Wen Zhang, Liang Xing, Ma Teng, Chen Chen, 2017. Aquifer Parameter Estimation of Transient Pumping Test Based on Analytical and Numerical Methods. Earth Science, 42(5): 743-750. doi: 10.3799/dqkx.2017.062
    Citation: Li Xia, Wen Zhang, Liang Xing, Ma Teng, Chen Chen, 2017. Aquifer Parameter Estimation of Transient Pumping Test Based on Analytical and Numerical Methods. Earth Science, 42(5): 743-750. doi: 10.3799/dqkx.2017.062

    Aquifer Parameter Estimation of Transient Pumping Test Based on Analytical and Numerical Methods

    doi: 10.3799/dqkx.2017.062
    • Received Date: 2016-11-06
    • Publish Date: 2017-05-15
    • The aquifer parameters are the necessary basis data for calculation of groundwater resources and prevention of groundwater pollution, therefore it is necessary to invert the parameters with numerical method. According to the standard of 1:50 000 hydrogeological survey, two pumping tests with single pumping well in deep aquifer and two pumping wells in shallow aquifer were conducted at Fuxing Water Works at Yanglinwei Town of Xiantao City in Jianghan plain. The theory of first kind of leakage system was adopted to estimate the parameters in deep aquifer. For the shallow aquifer, a comprehensive well function was derived and the parameters were obtained by using the special type curve matching method and straight line method. In addition, the FEFLOW software has also been used to develop a numerical model for the pumping tests. The parameters were also estimated by the numerical model associated with the pumping test data. The results indicate that the hydraulic conductivity and the specific storage coefficient of the shallow confined aquifer are 21.66-54.00 m/d and 1.28×10-5 to 8.00×10-4 m-1, respectively. The hydraulic conductivity and the specific storage coefficient for the deep confined aquifer are 1.27-7.00 m/d and 3.90×10-6 to 5.00×10-6 m-1, respectively. The leakage from the third aquitard layer is significant, which should be taken into account for the analysis of the pumping test. In this paper, the numerical model is developed to estimate the aquifer parameters associated with the pumping test data, the structure of the aquifer was considered in detail in the numerical model. The good agreement between the simulated results and the measured data indicate that the results obtained from the numerical simulation are reliable.

       

    • 本研究得到胜利油田地质科学研究院王永诗总地质师、沾车海室李开孟高工、林会喜主任、庄文山高工、阳显文工程师、地层古生物室贺振健高工、郝运轻工程师、边雪梅工程师等的大力支持和帮助, 在此表示衷心感谢!
    • Chen, X.L., Wen, Z., Hu, J.S., et al., 2016.Application of Numerical Simulation and Analytical Methods to Estimate Hydraulic Parameters of Foundation Pit in Hydropower Stations.Earth Science, 41(4):701-710(in Chinese with English abstract).
      Chen, X.L., Zhang, M.Y., Wen, Z., et al., 2014.Application of Numerical Simulation to Estimate the Hydraulic Parameters in Fractured Media:A Case Study in Emergency Water Area of Qitaihe City, Heilongjiang Province.Hydrogeology & Engineering Geology, 41(5):32-37, 56 (in Chinese with English abstract).
      Guo, J.Q., Zhou, H.F., Li, Y., et al., 2009.The Linear-Analytical Method of Estimating Aquifer Parameters from Unsteady Pumping Test Data.China Rural Water and Hydropower, (4):18-21 (in Chinese with English abstract).
      Hao, J., 2012.Numerical Simulation Study of Groundwater by FEFLOW in Baojixia Irrigation on Loess Plateau(Dissertation).Northwest A & F University, Yangling(in Chinese with English abstract).
      Li, P.Y., 2011.Comparative Study on the Methods for Determining Hydrogeological Parameters in Leaky Confined Aquifers by Transient Flow Pumping Test(Dissertation).Chang'an University, Xi'an, 9-20(in Chinese with English abstract).
      Liu, H.J., Hsu, N.S., Lee, T.H., 2009.Simultaneous Identification of Parameter, Initial Condition, and Boundary Condition in Groundwater Modelling.Hydrological Processes, 23(16):2358-2367.doi: 10.1002/hyp.7344
      Liu, Y., Shao, J.L., Chen, C.S., 2015.Hydrogeological Parameter Estimations for Slug Test in Sloping Confined Aquifer.Earth Science, 40(5):925-932 (in Chinese with English abstract).
      Neuman, S.P., 1975.Analysis of Pumping Test Data from Anisotropic Unconfined Aquifers Considering Delayed Gravity Response.Water Resources Research, 11(2):329-342.doi: 10.1029/wr011i002p00329
      Nie, Q.L., Gao, G.D., Xuan, H.S., et al., 2009.Methods of Determining Parameters of a Confined Aquifer with Pumping Tests.Hydrogeology & Engineering Geology, 36(4):37-40, 49(in Chinese with English abstract).
      Raymond, J., Therrien, R., Gosselin, L., et al., 2011.A Review of Thermal Response Test Analysis Using Pumping Test Concepts.Ground Water, 49(6):932-945.doi: 10.1111/j.1745-6584.2010.00791.x
      Sahin, A.U., 2016.A New Parameter Estimation Procedure for Pumping Test Analysis Using a Radial Basis Function Collocation Method.Environmental Earth Sciences, 75(3):1-13.doi: 10.1007/s12665-015-5079-y
      Tang, Y.M., Xiao, J., 2001.The Characteristic Parameters of Groundwater System in Mining Area—The Hydrogeological Significance and Function of the System.Hydrogeology and Engineering Geology, (6):26-29(in Chinese with English abstract).
      van Camp, M.V., Walraevens, K., 2009.Pumping Test Interpretation by Combination of Latin Hypercube Parameter Sampling and Analytical Models.Computers & Geosciences, 35(10):2065-2073.doi: 10.1016/j.cageo.2008.12.011
      Xue, Y.Q., Zhu, X.Y., 1999.Groundwater Dynamic.Geological Publishing House, Beijing, 66-72(in Chinese).
      Yang, W., 2007.Numerical Simulation Research of Groundwater with FEFLOW in the West of Jilin Province(Dissertation).Jilin University, Changchun(in Chinese with English abstract).
      Zech, A., Arnold, S., Schneider, C., et al., 2015.Estimating Parameters of Aquifer Heterogeneity Using Pumping Tests—Implications for Field Applications.Advances in Water Resources, 83:137-147.doi: 10.1016/j.advwatres.2015.05.021
      Zhao, B.F., Kang, W.D., Zhutian, D.W., et al., 2009a.Aquifer Parameter Recognition by Combining Simulation of Pumping Test and Water Level of Long-Term Observation Well.Journal of Jilin University(Earth Science Edition), 39(3):482-486(in Chinese with English abstract).
      Zhao, B.F., Kang, W.D., Zhutian, D.W., et al., 2009b.Aquifer Parameter Recognition Based on Numerical Simulation.Journal of Earth Sciences and Environment, 31(4):409-412(in Chinese with English abstract).
      Zhao, D.J., 2005.The Three-Dimensional Numerical Simulation for Groundwater System in Jianghan Plain(Dissertation).China University of Geosciences, Wuhan(in Chinese with English abstract).
      Zhao, X., 2009.Numerical Simulation Study of Groundwater Based on FEFLOW and GIS Technology in Xianyang City(Dissertation).Northwest A & F University, Yangling(in Chinese with English abstract).
      Zhou, Z.F., Tang, R.L., Wang, B., 1999.Determination of Hydrogeological Parameters of Leaky Aquifer Based on Pumping Test Data of Partially Penetrating Well near the Boundary.Journal of Hohai University, 27(3):5-8(in Chinese with English abstract).
      陈晓恋, 文章, 胡金山, 等, 2016.解析法与数值法在水电站防渗墙效果评价中的运用.地球科学, 41(4):701-710. http://www.earth-science.net/WebPage/Article.aspx?id=3287
      陈晓恋, 张美雁, 文章, 等, 2014.裂隙含水层水文地质参数反演——以黑龙江七台河市应急水源地为例.水文地质工程地质, 41(5):32-37, 56. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201405008.htm
      郭建青, 周宏飞, 李彦, 等, 2009.分析非稳定流抽水试验数据的改进直线解析法.中国农村水利水电, (4):18-21. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD200904005.htm
      郝健, 2012. 基于FEFLOW的宝鸡峡原上灌区地下水数值模拟研究(硕士学位论文). 杨凌: 西北农林科技大学.
      李培月, 2011. 非稳定流抽水试验确定越流承压含水层水文地质参数方法对比研究(硕士学位论文). 西安: 长安大学, 9-20.
      刘颖, 邵景力, 陈家洵, 2015.基于微水试验倾斜承压含水层水文地质参数的推估.地球科学, 40(5):925-932. http://www.earth-science.net/WebPage/Article.aspx?id=3084
      聂庆林, 高广东, 轩华山, 等, 2009.抽水试验确定承压含水层参数方法探讨.水文地质工程地质, 36(4):37-40, 49. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200904011.htm
      唐依民, 肖江, 2001.矿区地下水系统特征参数——系统域值的水文地质意义及作用.水文地质工程地质, 6:26-29. doi: 10.3969/j.issn.1000-3665.2001.04.008
      薛禹群, 朱学愚, 1999.地下水动力学.北京:地质出版社, 66-72.
      杨威, 2007. 基于FEFLOW的吉林西部地下水数值模拟研究(硕士学位论文). 长春: 吉林大学.
      赵宝峰, 康卫东, 祝田多娃, 等, 2009a.抽水试验和长观水位联合模拟确定含水层参数.吉林大学学报:地球科学版, 39(3):482-486. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200903017.htm
      赵宝峰, 康卫东, 祝田多娃, 等, 2009b.基于数值模拟的含水层参数识别.地球科学与环境学报, 31(4):409-412. http://www.cnki.com.cn/Article/CJFDTOTAL-XAGX200904013.htm
      赵德君, 2005. 江汉平原地下水系统三维数值模拟(硕士学位论文). 武汉: 中国地质大学.
      赵旭, 2009. 基于FEFLOW和GIS技术的咸阳市地下水数值模拟研究(硕士学位论文). 杨凌: 西北农林科技大学.
      周志芳, 汤瑞凉, 汪斌, 1999.基于抽水试验资料确定含水层水文地质参数.河海大学学报(自然科学版), 27(3):5-8. http://www.cnki.com.cn/Article/CJFDTOTAL-HHDX199903001.htm
    • Relative Articles

    • Cited by

      Periodical cited type(14)

      1. 张杰,黄勇. 长江漫滩区软土渗透系数计算方法对比分析. 中国煤炭地质. 2024(02): 37-42 .
      2. 陈迪,闫海涛,乔翔宇,王全荣. 巨厚非均质含水层中超深孔涌水量预测. 地质科技通报. 2024(04): 302-310 .
      3. 刘咏康. 基于单孔稳定流求取水文地质参数. 地下水. 2024(06): 148-149+306 .
      4. 何海清,李青青,杨进,杨辉. 二元地基基坑降水对周边地下水位影响研究. 山西建筑. 2023(17): 104-107+148 .
      5. 张睿敏. 超深大基坑工程深厚承压水的抽水试验研究. 建筑技术. 2022(02): 192-195 .
      6. 李磊,陈干,唐沛,姚德华,党峰荣. 基于解析法和数值法反演哈尔滨漫滩区水文地质参数. 城市轨道交通研究. 2021(10): 54-59 .
      7. 顾昊琛,王全荣,詹红兵. 非完整井下单井注抽试验数值模拟方法改进. 地球科学. 2020(02): 685-692 . 本站查看
      8. 刘军. 基于VBA和群井叠加原理的水文地质参数反演和降深预测. 水利规划与设计. 2020(08): 146-149 .
      9. 王少伟,徐进,杨伟涛. 地下水流并行有限层方法及同伦反演研究. 计算力学学报. 2020(06): 756-762 .
      10. 马莲净,赵宝峰. 顶板含水层放水试验的钻孔单位涌水量计算方法. 中国安全生产科学技术. 2019(03): 49-54 .
      11. 刘蓉,曹国亮,赵勇,陆垂裕,孙青言,严聆嘉,彭鹏. 地面沉降对含水层参数及给水能力的影响研究. 水文地质工程地质. 2019(03): 47-54 .
      12. 李东炎,戚俊杰,胡睿. 基于抽水试验的地下含水层水动力学参数分析. 武汉大学学报(工学版). 2019(06): 482-488 .
      13. 方刚,刘柏根. 基于巴拉素井田多孔抽水试验的含水层特征及水力联系研究. 水文. 2019(03): 36-40+67 .
      14. 侯树楷,张永祥,辛小春,刘培斌,姚旭初,袁鸿鹄. 复杂干扰环境下抽水试验参数分析. 水利水电技术. 2019(10): 68-76 .

      Other cited types(10)

    • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-05020406080
      Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.6 %FULLTEXT: 24.6 %META: 73.7 %META: 73.7 %PDF: 1.7 %PDF: 1.7 %FULLTEXTMETAPDF
      Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.2 %其他: 5.2 %其他: 0.3 %其他: 0.3 %Central District: 0.1 %Central District: 0.1 %China: 0.4 %China: 0.4 %Reserved: 0.1 %Reserved: 0.1 %Sweden: 0.0 %Sweden: 0.0 %[]: 0.1 %[]: 0.1 %上海: 1.0 %上海: 1.0 %东莞: 0.7 %东莞: 0.7 %中卫: 0.1 %中卫: 0.1 %临汾: 0.1 %临汾: 0.1 %乌鲁木齐: 0.0 %乌鲁木齐: 0.0 %亚历山德里亚: 0.0 %亚历山德里亚: 0.0 %伦敦: 0.1 %伦敦: 0.1 %保定: 0.1 %保定: 0.1 %北京: 16.6 %北京: 16.6 %南京: 0.7 %南京: 0.7 %南宁: 0.1 %南宁: 0.1 %南平: 0.1 %南平: 0.1 %南昌: 0.1 %南昌: 0.1 %台州: 0.3 %台州: 0.3 %台湾: 0.1 %台湾: 0.1 %合肥: 0.2 %合肥: 0.2 %呼和浩特: 0.2 %呼和浩特: 0.2 %咸阳: 0.0 %咸阳: 0.0 %哈密: 0.2 %哈密: 0.2 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %唐山: 0.3 %唐山: 0.3 %嘉兴: 0.0 %嘉兴: 0.0 %大同: 0.1 %大同: 0.1 %天津: 0.9 %天津: 0.9 %奥斯陆: 0.1 %奥斯陆: 0.1 %安顺: 0.1 %安顺: 0.1 %宣城: 0.2 %宣城: 0.2 %常州: 0.1 %常州: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.2 %广州: 0.2 %庆阳: 0.1 %庆阳: 0.1 %张家口: 0.5 %张家口: 0.5 %徐州: 0.2 %徐州: 0.2 %成都: 0.4 %成都: 0.4 %扬州: 0.3 %扬州: 0.3 %承德: 0.1 %承德: 0.1 %抚州: 0.0 %抚州: 0.0 %新乡: 0.2 %新乡: 0.2 %昆明: 0.5 %昆明: 0.5 %晋城: 0.1 %晋城: 0.1 %朝阳: 0.0 %朝阳: 0.0 %杭州: 1.6 %杭州: 1.6 %桂林: 0.2 %桂林: 0.2 %榆林: 0.1 %榆林: 0.1 %武汉: 2.4 %武汉: 2.4 %汕头: 0.1 %汕头: 0.1 %沈阳: 0.3 %沈阳: 0.3 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.2 %济南: 0.2 %海北: 0.0 %海北: 0.0 %淄博: 0.1 %淄博: 0.1 %淮南: 0.3 %淮南: 0.3 %深圳: 0.1 %深圳: 0.1 %温州: 0.2 %温州: 0.2 %湖州: 0.0 %湖州: 0.0 %湘潭: 0.0 %湘潭: 0.0 %漯河: 0.4 %漯河: 0.4 %潮州: 0.1 %潮州: 0.1 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.0 %福州: 0.0 %秦皇岛: 0.2 %秦皇岛: 0.2 %红河: 0.1 %红河: 0.1 %纽瓦克: 0.1 %纽瓦克: 0.1 %维多利亚州: 0.1 %维多利亚州: 0.1 %芒廷维尤: 16.8 %芒廷维尤: 16.8 %芝加哥: 0.2 %芝加哥: 0.2 %苏黎世: 0.3 %苏黎世: 0.3 %莫斯科: 0.0 %莫斯科: 0.0 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.2 %衢州: 0.2 %襄阳: 0.0 %襄阳: 0.0 %西宁: 38.4 %西宁: 38.4 %西安: 0.3 %西安: 0.3 %贵阳: 0.5 %贵阳: 0.5 %运城: 0.2 %运城: 0.2 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.2 %邯郸: 0.2 %邵阳: 0.1 %邵阳: 0.1 %郑州: 0.9 %郑州: 0.9 %金华: 0.1 %金华: 0.1 %银川: 0.3 %银川: 0.3 %镇江: 0.1 %镇江: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 1.8 %长沙: 1.8 %长治: 0.2 %长治: 0.2 %阜新: 0.2 %阜新: 0.2 %青岛: 0.5 %青岛: 0.5 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %其他其他Central DistrictChinaReservedSweden[]上海东莞中卫临汾乌鲁木齐亚历山德里亚伦敦保定北京南京南宁南平南昌台州台湾合肥呼和浩特咸阳哈密哈尔滨哥伦布唐山嘉兴大同天津奥斯陆安顺宣城常州平顶山广州庆阳张家口徐州成都扬州承德抚州新乡昆明晋城朝阳杭州桂林榆林武汉汕头沈阳洛阳济南海北淄博淮南深圳温州湖州湘潭漯河潮州石家庄福州秦皇岛红河纽瓦克维多利亚州芒廷维尤芝加哥苏黎世莫斯科衡阳衢州襄阳西宁西安贵阳运城遵义邯郸邵阳郑州金华银川镇江长春长沙长治阜新青岛香港特别行政区

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(6)

      Article views (6387) PDF downloads(46) Cited by(24)
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return