• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 42 Issue 8
    Aug.  2017
    Turn off MathJax
    Article Contents
    Xu Peng, Li Cuihong, Liu Haicheng, Qiu Shuxia, Yu Boming, 2017. Fractal Features of the Effective Gas Transport Coefficient for Multiscale Porous Media. Earth Science, 42(8): 1373-1378. doi: 10.3799/dqkx.2017.104
    Citation: Xu Peng, Li Cuihong, Liu Haicheng, Qiu Shuxia, Yu Boming, 2017. Fractal Features of the Effective Gas Transport Coefficient for Multiscale Porous Media. Earth Science, 42(8): 1373-1378. doi: 10.3799/dqkx.2017.104

    Fractal Features of the Effective Gas Transport Coefficient for Multiscale Porous Media

    doi: 10.3799/dqkx.2017.104
    • Received Date: 2017-02-15
    • Publish Date: 2017-08-15
    • The pore structures and connections in unconventional oil and gas resources are very complex, the size of which may vary several orders of magnitude from millimeter to nanometer. And gas transport process depends on both microstructure characteristics and gas properties in the multiscale porous media. As gas transport in multiscale porous media may involve multiple transport mechanisms such as no-slip and slip flow, transition flow, Knudsen and molecular diffusion, it is difficult to characterize the gas transport with continuum theory. Since it has been proven that natural pore structures indicate fractal scaling laws, fractal geometry is employed in this study to model the multiscale pore structures. The fractal dimensions are introduced to characterize the pore size distribution and tortuous flow path, and a mesoscopic model is developed to study the gas transport in multiscale porous media. The effective permeability and diffusion coefficient of multiscale porous media are derived and presented, and the effect of microstructures and gas properties on the equivalent transport properties is also discussed. This study may be helpful for the development of seepage theory and understanding the output mechanisms of unconventional oil and gas reservoirs.

       

    • loading
    • Beskok, A., Karniadakis, G.E., 1999.Report:A Model for Flows in Channels, Pipes, and Ducts at Micro and Nano Scales.Microscale Thermophysical Engineering, 3(1):43-77.doi: 10.1080/108939599199864
      Civan, F., 2001.Scale Effect on Porosity and Permeability:Kinetics, Model and Correlation.AIChE Journal, 47(2):271-287.doi: 10.1002/aic.690470206
      Cussler, E.L., 2009.Diffusion Mass Transfer in Fluid Systems (3rd Ed.).Cambridge University Press, New York.
      Fang, Y., Xie, S.Y., He, Z.L., et al., 2016.Thin Section-Based Geochemical Dissolution Experiments of Ooid Carbonates.Earth Science, 41(5):779-791 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201605005.htm
      Guo, Y.C., Song, Y., Pang, X.Q., et al., 2016.Characteristics and Genetic Mechanism of Near-Source Accumulated Accumulation for Continuous-Type Tigh-Sand Gas.Earth Science, 41(3):433-440 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201603009.htm
      Ismail, M.S., Ingham, D.B., Hughes, K.J., et al., 2015.Effective Diffusivity of Polymer Electrolyte Fuel Cell Gas Diffusion Layers:An Overview and Numerical Study.International Journal of Hydrogen Energy, 40(34):10994-11010.doi: 10.1016/j.ijhydene.2015.06.073
      Javadpour, F., Fisher, D., Unsworth, M., 2007.Nanoscale Gas Flow in Shale Gas Sediments.Journal of Canadian Petroleum Technology, 46(10):55-61.doi: 10.2118/07-10-06
      Karniadakis, G.E., Beskok, A., 2002.Micro-Flows, Fundamentals and Simulation.Spinger-Verlag, New York.
      Katz, A.J., Thompson, A.H., 1985.Fractal Sandstone Pores:Implications for Conductivity and Pore Formation.Physical Review Letters, 54(12):1325-1328.doi: 10.1103/PhysRevLett.54.1325
      Li, C.H., Xu, P., Qiu, S.X., et al., 2016a.The Gas Effective Permeability of Porous Media with Klinkenberg Effect.Journal of Natural Gas Science and Engineering, 34:534-540.doi: 10.1016/j.jngse.2016.07.017
      Li, D.L., Zha, W.S., Liu, S.F., et al., 2016b.Pressure Transient Analysis of Low Permeability Reservoir with Pseudo Threshold Pressure Gradient.Journal of Petroleum Science and Engineering, 147:308-316.doi: 10.1016/j.petrol.2016.05.036
      Li, D.L., Zhang, L.J., Wang, J.Y.L., et al., 2016c.Composition-Transient Analysis in Shale-Gas Reservoirs with Consideration of Multicomponent Adsorption.SPE Journal, 21(2):648-664.doi: 10.2118/178435-PA
      Lo, S.K., Tseng, C.J., Tsai, L.D., et al., 2011.Fractal Permeability Models for the Microporous Layer and Gas Diffusion Layer of PEM Fuel Cell.Journal of the Chinese Institute of Engineers, 34(1):39-47.doi: 10.1080/02533839.2011.552964
      Martínez, L., Florido-Díaz, F.J., Hernández, A., et al., 2002.Characterisation of Three Hydrophobic Porous Membranes Used in Membrane Distillation-Modelling and Evaluation of Their Water Vapour Permeabilities.Journal of Membrane Science, 203(1-2):15-27.doi: 10.1016/S0376-7388(01)00719-0
      Perfect, E., Kay, B.D., 1955.Applications of Fractals in Soil and Tillage Research:A Review.Soil & Tillage Research, 36(1-2):1-20.doi: 10.1016/0167-1987(96)81397-3
      Shou, D.H., Fan, J.T., Mei, M.F., et al., 2014.An Analytical Model for Gas Diffusion through Nanoscale and Microscale Fibrous Media.Microfluidics and Nanofluidics, 16(1-2):381-389.doi: 10.1007/s10404-013-1215-8
      Welty, J.R., Wicks, C.E., Wilson, R.E., et al., 2008.Fundamentals of Momentum, Heat and Mass Transfer (5th Ed.).John Wiley & Sons, New York.
      Wu, R., Liao, Q., Zhu, X., et al., 2011.A Fractal Model for Determining Oxygen Effective Diffusivity of Gas Diffusion Layer under the Dry and Wet Conditions.International Journal of Heat and Mass Transfer, 54(19-20):4341-4348.doi: 10.1016/j.ijheatmasstransfer.2011.05.010
      Xu, P., 2015.A Discussion on Fractal Models for Transport Physics of Porous Media.Fractals, 23(3):1530001.doi: 10.1142/S0218348X15300019
      Yu, B., 2008.Analysis of Flow in Fractal Porous Media.Applied Mechanics Reviews, 61(5):050801.doi: 10.1115/1.2955849
      Yu, B.M., Cheng, P., 2002.A Fractal Permeability Model for Bi-Dispersed Porous Media.International Journal of Heat and Mass Transfer, 45(14):2983-2993.doi: 10.1016/S0017-9310(02)00014-5
      Zhang, L.Z., 2008.A Fractal Model for Gas Permeation through Porous Membranes.International Journal of Heat and Mass Transfer, 51(21-22):5288-5295.doi: 10.1016/j.ijheatmasstransfer.2008.03.008
      Zheng, Q., Yu, B.M., Wang, S.F., et al., 2012.A Diffusivity Model for Gas Diffusion through Fractal Porous Media.Chemical Engineering Science, 68(1):650-655.doi: 10.1016/j.ces.2011.10.031
      方旸, 谢淑云, 何治亮, 等, 2016.基于岩石薄片的鲕粒碳酸盐岩地球化学溶蚀.地球科学, 41(5): 779-791. http://www.earth-science.net/WebPage/Article.aspx?id=3292
      郭迎春, 宋岩, 庞雄奇, 等, 2016.连续型致密砂岩气近源累计聚集的特征及成因机制.地球科学, 41(3): 433-440. doi: 10.11764/j.issn.1672-1926.2016.03.0433
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(3)

      Article views (5175) PDF downloads(57) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return