• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 42 Issue 11
    Nov.  2017
    Turn off MathJax
    Article Contents
    Yang Jianghai, Ma Yan, 2017. Paleoclimate Perspectives of Source-to-Sink Sedimentary Processes. Earth Science, 42(11): 1910-1921. doi: 10.3799/dqkx.2017.121
    Citation: Yang Jianghai, Ma Yan, 2017. Paleoclimate Perspectives of Source-to-Sink Sedimentary Processes. Earth Science, 42(11): 1910-1921. doi: 10.3799/dqkx.2017.121

    Paleoclimate Perspectives of Source-to-Sink Sedimentary Processes

    doi: 10.3799/dqkx.2017.121
    • Received Date: 2017-06-06
    • Publish Date: 2017-11-15
    • Source-to-Sink process involves the production, transportation and accumulation of terrigenous clastic sediments. Sediments are produced dominantly by weathering and eroding exposed rocks on continent surfaces, with processes mainly regulated by climate and tectonics. Modern regolith studies document that under specific weathering regime (supply-limited weathering), surface soils can be weathered to certain degrees related to temperature and moisture (precipitation vs. evaporation) and their relationships can be outlined by empirical climate transfer functions. Through Source-to-Sink process, the climate signal can be transmitted, along sediment transport, from the source to the sink and is finally preserved in the sedimentary archives. However, climate signals might be damped or shred by landscape erosion and sediment routing systems due to the complexity and autogenic fluctuations of Source-to-Sink process. The climate signal propagation can be selectively filtered, and its fidelity and efficiency are closely related to the frequency and amplitude of climate changes. Studies of deep-time paleoclimate of terrigenous clastic sequences require a thorough understanding of the Source-to-Sink process and the comparison between timescales of sedimentary system responding and potential climate change.

       

    • loading
    • Allen, P.A., 2008.From Landscapes into Geological History.Nature, 451(17):274-276.doi: 10.1038/nature06586
      Armitage, J.J., Jones, T.D., Duller, R.A., et al., 2013.Temperal Buffering of Climate-Driven Sediment Flux Cycles by Transient Catchment Response.Earth and Planetary Science Letters, 369-370:200-210.doi: 10.1016/j.epsl.2013.03.020
      Berner, R.A., 2006.Inclusion of the Weathering of Volcanic Rocks in the GEOCARBSULF Model.American Journal of Science, 306:295-302.doi: 10.2475/05.2006.01
      Blöthe, J.H., Korup, O., 2013.Millennial Lag Times in the Himalayan Sediment Routing System.Earth and Planetary Science Letters, 382:38-46.doi: 10.1016/j.epsl.2013.08.044
      Bouchez, J., Gaillarder, J., France-Lanord, C., et al., 2011.Grain Size Control of River Suspended Sediment Geochemistry:Clues from Amazon River Depth Profiles.Geochemistry Geophysics Geosystems, 12(3):428-452.doi: 10.1029/2010GC003380
      Bridge, J., Demicco, R., 2008.Earth Surface Processes, Landforms and Sediment Deposits.Cambridge University Press, New York.
      Castelltort, S., Driessche, J.V.D., 2003.How Plausible are High-Frequency Sediment Supply-Driven Cycles in the Stratigraphic Record? Sedimentary Geology, 157(1-2):3-13.doi: 10.1016/S0037-0738(03)00066-6
      Chen, Z., Ding, Z., Tang, Z., et al., 2017.Paleoweathering and Paleoenvironmental Change Recorded in Lacustrine Sediments of the Early to Middle Eocene in Fushun Basin, Northeast China.Geochemistry Geophysics Geosystems, 18:41-51.doi: 10.1002/2016GC006573
      Chetelat, B., Liu, C.Q., Wang, Q., et al., 2013.Assessing the Influence of Lithology on Weathering Indices of Changjiang River Sediments.Chemical Geology, 359:108-115.doi: 10.1016/j.chemgeo.2013.09.018
      Clift, P.D., Hodges, K.V., Heslop, D., et al., 2008.Correlation of Himalayan Exhumation Raes and Asian Monsoon History.Nature Geoscience, 1:875-880.doi: 10.1038/ngeo351
      Clift, P.D., Wan, S., Blusztajn, J., 2014.Reconstructing Chemical Weathering, Physical Erosion and Monsoon Intensity since 25 Ma in the Northern South China Sea:A Review of Competing Proxies.Earth-Science Reviews, 130:86-102.doi: 10.1016/j.earscirev.2014.01.002
      Cox, R., Lowe, D.R., Cullers, R.L., 1995.The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States.Geochimica et Cosmochimica Acta, 59(14):2919-2940.doi: 10.1016/0016-7037(95)00185-9
      Cullers, R.L., 2000.The Geochemistry of Shales, Siltstones and Sandstones of Pennsylvanian-Permian Age, Colorado, USA:Implications for Provenance and Metamorphic Studies.Lithos, 51:181-203.doi: 10.1016/S0024-4937(99)00063-8
      Dere, A.L., White, T.S., April, R.H., et al., 2015.Mineralogical Transformations and Soil Development in Shale across a Latitudinal Climosequence.Soil Sci.Soc.Am.J., 80:623-636.doi: 10.2136/sssaj2015.05.0202
      Dere, A.L., White, T.S., April, R.H., et al., 2013.Climate Dependence of Feldspar Weathering in Shales Soils along a Latitudinal Gradient.Geochimica et Cosmochimica Acta, 122:101-126.doi: 10.1016/j.gca.2013.08.001
      Ding, H., Ma, D., Yao, C.et al., 2009.Sedimentary Environment of Ediacaran Glacigenic Diamictite in Guozigou of Xinjiang, China.Chinese Science Bulletin, 54:3283-3294.doi: 10.1007/s11434-009-0443-5
      Dixon, J.L., Hartshorn, A.S., Heimsath, A.M., et al., 2012.Chemical Weathering Response to Tectonic Forcing:A Soils Perspective from the San Gabriel Mountains, California.Earth and Planetary Science Letters, 323-324:40-49.doi: 10.1016/j.epsl.2012.01.010
      Donders, T.H., Weijers, J.W.H., Munsterman, D.K., et al., 2009.Strong Climate Coupling of Terrestrial and Marine Environments in the Miocene of Northwest Europe.Earth and Planetary Science Letters, 281:215-225.doi: 10.1016/j.epsl.2009.02.034
      Fedo, C.M., Nesbitt, H.W., Young, G.M., 1995.Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance.Geology, 23(10):921-924.doi:10.1130/0091-7613(1995)023<0921
      Feng, L.J., Chu, X.L., Zhang, Q.R., et al., 2004.New Evidence of Deposition under Cold Climate for the Xieshuihe Formation of the Nanhua System in Northwestern Hunan, China.Chinese Science Bulletin, 49(13):1420-1427.doi: 10.1360/03wd0572
      Ferrier, K.L., Kirchner, J.W., 2008.Effects of Physical Erosion on Chemical Denudation Rates:A Numerical Modeling Study of Soil-Mantled Hillslopes.Earth and Planetary Science Letters, 272:591-599.doi: 10.1016/j.epsl.2008.05.024
      Ferrier, K.L., Riebe, C.S., Hahm, W.J., 2016.Testing for Supply-Limited and Kinetic-Limited Chemical Erosion in Field Measurements of Regolith Production and Chemical Depletion.Geochemistry Geophysics Geosystems, 17:2270-2285.doi: 10.1002/2016GC006273
      Foreman, B.Z., Heller, P.L., Clementz, M.T., 2012.Fluvial Response to Abrupt Global Warming at the Palaeocene/Eocene Boundary.Nature, 49:92-95.doi: 10.1038/nature11513
      Gabet, E.J., Mudd, S.M., 2009.A Theoretical Model Coupling Chemical Weathering Rates with Denudation Rates.Geology, 37(2):151-154.doi: 10.1130/G25270A.1
      Gaillardet, J., Dupré, B., Allegrè, C.J., 1999.Geochemistry of Large River Suspended Sediments:Silicate Weathering or Recycling Tracer? Geochimica et Cosmochimica Acta, 63(23/24):4037-4051.doi: 10.1016/S0016-7037(99)00307-5
      Garzanti, E., Andó, S., France-Lanord, C., et al., 2011.Mineralogical and Chemical Variability of Fluvial Sediments 2.Suspended-Load Silt (Ganga-Brahmaputra, Bangladesh).Earth and Planetary Science Letters, 302:107-120.doi: 10.1016/j.epsl.2010.11.043
      Garzanti, E., Doglioni, C., Vezzoli, G.et al., 2007.Orogenic Belts and Orogenic Sediment Provenance.The Journal of Geology, 115:315-334.doi: 10.1086/512755
      Garzanti, E., Padoan M., Setti, M., et al., 2013.Weathering Geochemistry and Sr-Nd Fingerprints of Equatorial Upper Nile and Congo Muds.Geochemistry Geophysics Geosystems, 14(2):292-316.doi: 10.1002/ggge.20060
      Garzanti, E., Padoan, M., Setti, M., et al., 2014.Provenance versus Weathering Control on the Composition of Tropical River Mud Southern Africa.Chemical Geology, 366:61-74.doi: 10.1016/j.chemgeo.2013.12.016
      Ge, H.M., Zhang, C.L., 2016.Advances in GDGT Research in Chinese Marginal Seas:A Review.Science China:Earth Sciences, 46(4):473-488 (in Chinese).doi: 10.1007/s11430-015-5242-z
      Gehrels, G., 2014.Detrital Zircon U-Pb Geochronology Applied to Tectonics.Annual Review of Earth and Planetary Sciences, 42:127-149.doi: 10.1146/annurev-earth-050212-124012
      Goodbred-Jr., S.L., 2003.Response of the Ganges Dispersal System to Climate Change:A Source-to-Sink View since the Last Inerstade.Sedimentary Geology, 162:83-104.doi: 10.1016/S0037-0738(03)00217-3
      Harnois, L., 1988.The CIW Index:A New Chemical Index of Weathering.Sedimentary Geology, 55(3-4):319-322.doi: 10.1016/0037-0738(88)90137-6
      Hietpas, J., Samson, S., Moecher, D., et al., 2010.Recovering Tectonic Events from the Sedimentary Record:Detrital Monazite Plays in High Fidelity.Geology, 38(2):167-170.doi: 10.1130/G30265.1
      Hu, X., Garzanti, E., Moore, T.et al., 2015.Direct Stratigraphic Dating of India-Asia Collision Onset at the Selandian (Middle Paleocene, 59±1 Ma).Geology, 43(10):859-862.doi: 10.1130/G36872.1
      Jerolmack, D.J., Paola, C., 2010.Shredding of Environmental Signals by Sediment Transport.Geophysical Research Letters, 37:L19401.doi: 10.1029/2010GL044638