• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 42 Issue 8
    Aug.  2017
    Turn off MathJax
    Article Contents
    Lei Gang, Zhang Dongxiao, Yang Wei, Wang Huijie, 2017. Mathematical Model for Wells Drilled in Large-Scale Partially Filled Cavity in Fractured-Cavity Reservoirs. Earth Science, 42(8): 1413-1420. doi: 10.3799/dqkx.2017.519
    Citation: Lei Gang, Zhang Dongxiao, Yang Wei, Wang Huijie, 2017. Mathematical Model for Wells Drilled in Large-Scale Partially Filled Cavity in Fractured-Cavity Reservoirs. Earth Science, 42(8): 1413-1420. doi: 10.3799/dqkx.2017.519

    Mathematical Model for Wells Drilled in Large-Scale Partially Filled Cavity in Fractured-Cavity Reservoirs

    doi: 10.3799/dqkx.2017.519
    • Received Date: 2017-02-03
    • Publish Date: 2017-08-15
    • It is significant to explore fluid crossflow rule of various medium in fractured-cavity reservoirs for effective development of crude oil in large-scale partially filled cavity. Based on the filling characteristics of the large size cavity in fractured-cavity reservoir, a fluid flow mathematical model for wells drilled in large-scale partially filled cavity in fractured-cavity reservoir has been proposed in this paper. The Laplace transformation and Stehfest numerical inversion are applied to analyze the crossflow rule in the partially filled cavity. The fluid crossflow characteristic curve for the partially filled cavity has been obtained and studied in this paper. The results show that the process of the flow for the partially filled cavity can be divided into four sections, including the earlier period and middle-early period flow for the crossflow between the matrix system and unfilled part of the cavity, the middle-late period and the later period flow for the crossflow between the filler of the cavity and unfilled part of the cavity. In middle-early flow period, the crossflow between the matrix system and unfilled part of the cavity reaches the quasi steady state. And the crossflow between the filler of the cavity and unfilled part of the cavity reaches the quasi steady state at the later period. Gravity is one of the main factors that influences the typical crossflow characteristic curve, leading to the decrease of the crossflow between the filler and the unfilled part of the cavity. However, the inter-porosity flow between the matrix and the unfilled part of the cavity has no relation with gravity. In addition, the cross flow characteristic curve is greatly affected by filling degree of the cavity, the energy parameters of the filler of the cavity and the energy parameters of the matrix. The methods and results of this research can facilitate further studies on the crossflow characteristics of the partially filled cavity in fractured-cavity reservoirs.

       

    • loading
    • Arbogast, T., Gomez, M.S.M., 2008.A Discretization and Multigrid Solver for a Darcy-Stokes System of Three Dimensional Vuggy Porous Media.Computational Geosciences, 13(3):331-348.doi: 10.1007/s10596-008-9121-y
      Cai, J.C., Guo, S.L., You, L.J., et al., 2013.Fractal Analysis of Spontaneous Imbibition Mechanism in Fractured-Porous Dual Media Reservoir.Acta Physica Sinica, 62(1):220-224 (in Chinese with English abstract). doi: 10.7498/aps.62.014701
      Cai, J.C., Hu, X.Y., Standnes, D.C., et al., 2012.An Analytical Model for Spontaneous Imbibition in Fractal Porous Media Including Gravity.Colloids and Surfaces A:Physicochemical and Engineering Aspects, 414:228-233.doi: 10.1016/j.colsurfa.2012.08.047
      Chen, F.F., Zhang, F.X., Deng, X.L., et al., 2015.A Numerical Well Test Model for Wells Drilled out of Big-Size Cavity of Fractured Carbonate Reservoirs.Science & Technology Review, 33(9):46-49 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KJDB201509018.htm
      Cheng, C.L., Perfect, E., Donnelly, B., et al., 2015.Rapid Imbibition of Water in Fractures within Unsaturated Sedimentary Rock.Advances in Water Resources, 77:82-89.doi: 10.1016/j.advwatres.2015.01.010
      Cheng, Q., Xiong, W., Gao, S.S., et al., 2009.Channeling Model of Non-Steady Flow from Matrix to Insular Cavity.Special Oil and Gas Reservoirs, 16(3):53-54 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TZCZ200903017.htm
      Gao, B., Huang, Z.Q., Yao, J., et al., 2016.Pressure Transient Analysis of a Well Penetrating a Filled Cavity in Naturally Fractured Carbonate Reservoirs.Journal of Petroleum Science and Engineering, 145:392-403.doi:org/ 10.1016/j.petrol.2016.05.037
      Han, J.F., Mei, L.F., Pan, W.Q., et al., 2007.Complex Carbonate Hydrocarbon Reservoir Modeling and Reserve Calculating:Taking the Buried Carbonate Hill Oil-Gas Pool Reserve Calculation as an Example.Earth Science, 32(2):267-272 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200702016.htm
      Hu, X.Y., Quan, L.S., Qi, D.S., 2014.Features of Cavern Filling in Fractured/Vuggy Carbonate Oil Reservoirs, Tahe Oilfield.Special Oil & Gas Reservoirs, 21(1):18-21 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TZCZ201401004.htm
      Huo, Z.P., Jiang, T., Pang, X.Q., et al., 2016.Evaluation of Deep Carbonate Source Rocks with Low TOC and Contribution to Oil-Gas Accumulation in Tazhong Area, Tarim Basin.Earth Science, 41(12):2061-2074 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201612010.htm
      Jin, Q., Tian, F., Lu, X.B., et al., 2015.Characteristics of Collapse Breccias Filling in Caves of Runoff Zone in the Ordovician Karst in Tahe Oilfield, Tarim Basin.Oil & Gas Geology, 36(5):729-735, 755 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201505004.htm
      Kang, Z.J., 2010.New Method of Coupling Numerical Simulation and Application to Fracture-Cavern Carbonate Reservoir.Xinjiang Petroleum Geology, 31(5):514-516 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD201005024.htm
      Li, S., Li, Y., 2010.An Experimental Research on Water Injection to Replace the Oil in Isolated Caves in Fracture-Cavity Carbonate Rock Oilfield.Journal of Southwest Petroleum University (Science & Technology Edition), 32(1):117-120 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XNSY201001021.htm
      Li, Y., 2012.Ordovician Carbonate Fracture-Cavity Reservoirs Identification and Quantitative Characterization in Tahe Oilfield.Journal of China University of Petroleum (Edition of Natural Science), 36(1):1-8 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX201201002.htm
      Li, Y., 2013.The Theory and Method for Development of Carbonate Fractured-Cavity Reservoirs in Tahe Oilfield.Acta Petrolei Sinica, 34(1):115-121 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB201301012.htm
      Li, Y., Fan, Z.H., 2011.Developmental Pattern and Distribution Rule of the Fracture-Cavity System of Ordovician Carbonate Reservoirs in the Tahe Oilfield.Acta Petrolei Sinica, 32(1):101-106 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB201101016.htm
      Liu, H., Wang, X.H., Yang, F., et al., 2012.Pressure Response Characteristics of Large Size Cave.Fault-Block Oil & Gas Field, 19(1):99-102 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKYT201201024.htm
      Liu, Z.C., Li, J.L., Lü, C.Y., et al., 2009.Experimental Study on Effect of Reservoir Space Types on Water Cut of Wells in Karstic-Fractured Carbonate Reservoir.Acta Petrolei Sinica, 30(2):271-274 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200902021.htm
      Pan, J.G., Wei, P.S., Cai, Z.X., et al., 2012.Reservoir Architectural System in the Middle-Lower Ordovician Carbonate Rock of Tazhong Areas in Tarim.Earth Science, 37(4):751-762 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201204015.htm
      Peng, X.L., Du, Z.M., Liang, B.S., et al., 2009.Darcy-Stokes Streamline Simulation for the Tahe-Fractured Reservoir with Cavities.SPE Journal, 14(3):543-552.doi: 10.2118/107314-pa
      Popov, P., Qin, G., Bi, L., et al., 2007.Multiphysics and Multiscale Methods for Modeling Fluid Flow through Naturally Fractured Carbonate Karst Reservoirs.SPE Reservoir Evaluation & Engineering, 12(2):218-231.doi: 10.2118/105378-PA
      Qian, H.T., Sun, Q., Wang, S.J., 2014.Effects of Geo-Stress on Carbonate Dissolution and Karst Evolution.Earth Science, 39(7):896-904 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201407012.htm
      Wang, J., Liu, H.Q., Ning, Z.F., et al., 2014.Experiments on Water Flooding in Fractured-Vuggy Cells in Fractured-Vuggy Reservoirs.Petroleum Exploration and Development, 41(1):67-73 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SKYK201401009.htm
      Wang, J., Liu, H.Q., Xu, J., et al., 2012.Formation Mechanism and Distribution Law of Remaining Oil in Fracture-Cavity Reservoirs.Petroleum Exploration and Development, 39(5):585-590 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK201205012.htm
      Xiong, W., Chang, B.H., Pan, M., et al., 2011.Impact of Water Injection on Water Content in Single Well Fractured-Vuggy System.Fault-Block Oil & Gas Filed, 18(4):479-481 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKYT201104019.htm
      Yao, J., Huang, Z.Q., Wang, Z.S., et al., 2010.Mathematical Model of Fluid Flow in Fractured Vuggy Reservoirs Based on Discrete Fracture-Vug Network.Acta Petrolei Sinica, 31(5):815-819 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201005023.htm
      Yao, J., Wang, X., Wang, C.C., et al., 2013.The Influence of Carbonate Rocks Reservoir Parameters on Microscopic Flow.Earth Science, 38(5):1047-1052 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201305016.htm
      Zhang, F.X., Chen, F.F., Peng, J.X., et al., 2009.A Well Test Model for Wells Drilled in Big-Size Cavity of Naturally Fractured Vuggy Carbonate Reservoirs.Acta Petrolei Sinica, 30(6):912-915 (in Chinese with English abstract). http://www.syxb-cps.com.cn/EN/Y2009/V30/I6/912
      蔡建超, 郭士礼, 游利军, 等, 2013.裂缝-孔隙型双重介质油藏渗吸机理的分形分析.物理学报, 62(1): 220-224. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201301035.htm
      陈方方, 张福祥, 邓兴梁, 等, 2015.井打在溶洞外的缝洞型油藏数值试井模型.科技导报, 33(9): 46-49. doi: 10.3981/j.issn.1000-7857.2015.09.007
      程倩, 熊伟, 高树生, 等, 2009.基岩-孤立溶洞不稳定窜流方程.特种油气藏, 16(3): 53-54. http://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ200903017.htm
      韩剑发, 梅廉夫, 潘文庆, 等, 2007.复杂碳酸盐岩油气藏建模及储量计算方法:以潜山油气储量计算为例.地球科学, 32(2): 267-272. http://earth-science.net/WebPage/Article.aspx?id=3450
      胡向阳, 权莲顺, 齐得山, 等, 2014.塔河油田缝洞型碳酸盐岩油藏溶洞充填特征.特种油气藏, 21(1): 18-21. http://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201401004.htm
      霍志鹏, 姜涛, 庞雄奇, 等, 2016.塔中地区深层低丰度碳酸盐岩有效烃源岩评价及其对油气藏贡献.地球科学, 41(12): 2061-2074. http://earth-science.net/WebPage/Article.aspx?id=3401
      金强, 田飞, 鲁新便, 等, 2015.塔河油田奥陶系古径流岩溶带垮塌充填特征.石油与天然气地质, 36(5): 729-735, 755. doi: 10.11743/ogg20150503
      康志江, 2010.缝洞型碳酸盐岩油藏耦合数值模拟新方法.新疆石油地质, 31(5): 514-516. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201005024.htm
      李鹴, 李允, 2010.缝洞型碳酸盐岩孤立溶洞注水替油实验研究.西南石油大学学报(自然科学版), 32(1): 117-120. http://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201001021.htm
      李阳, 2012.塔河奥陶系碳酸盐岩溶洞型储集体识别及定量表征.中国石油大学学报(自然科学版), 36(1): 1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201201002.htm
      李阳, 2013.塔河油田碳酸盐岩缝洞型油藏开发理论及方法.石油学报, 34(1): 115-121. doi: 10.7623/syxb201301013
      李阳, 范智慧, 2011.塔河奥陶系碳酸盐岩油藏缝洞系统发育模式与分布规律.石油学报, 32(1): 101-106. doi: 10.7623/syxb201101015
      刘洪, 王新海, 杨锋, 等, 2012.大尺度溶洞压力响应特征.断块油气田, 19(1): 99-102. http://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201201024.htm
      刘中春, 李江龙, 吕成远, 等, 2009.缝洞型油藏储集空间类型对油井含水率影响的实验研究.石油学报, 30(2): 271-274. doi: 10.7623/syxb200902020
      潘建国, 卫平生, 蔡忠贤, 等, 2012.塔中地区中-下奥陶统碳酸盐岩孔洞-裂缝储集系统划分及其特征.地球科学, 37(4): 751-762. http://earth-science.net/WebPage/Article.aspx?id=2281
      钱海涛, 孙强, 王思敬, 2014.地应力对碳酸盐岩溶解和岩溶发育的影响.地球科学, 39(7): 896-904. http://earth-science.net/WebPage/Article.aspx?id=2890
      王敬, 刘慧卿, 宁正福, 等, 2014.缝洞型油藏溶洞-裂缝组合体内水驱油模型及实验.石油勘探与开发, 41(1): 67-73. doi: 10.11698/PED.2014.01.08
      王敬, 刘慧卿, 徐杰, 等, 2012.缝洞型油藏剩余油形成机制及分布规律.石油勘探与开发, 39(5): 585-590. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201205012.htm
      熊伟, 常宝华, 潘懋, 等, 2011.单井缝洞系统注水对含水率的影响分析.断块油气田, 18(4): 479-481. http://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201104019.htm
      姚军, 黄朝琴, 王子胜, 等, 2010.缝洞型油藏的离散缝洞网络流动数学模型.石油学报, 31(5): 815-819. doi: 10.7623/syxb201005020
      姚军, 王鑫, 王晨晨, 等, 2013.碳酸盐岩储层参数对微观渗流的影响.地球科学, 38(5): 1047-1052. http://earth-science.net/WebPage/Article.aspx?id=2786
      张福祥, 陈方方, 彭建新, 等, 2009.井打在大尺度溶洞内的缝洞型油藏试井模型.石油学报, 30(6): 912-915. doi: 10.7623/syxb200906021
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)

      Article views (5599) PDF downloads(38) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return