• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 42 Issue 9
    Sep.  2017
    Turn off MathJax
    Article Contents
    Duan Yi, Duan Mingchen, Wu Yingzhong, Yao Jingli, Luo Anxiang, Deng Xiuqin, Qi Yalin, 2017. Impact of Formation Environment of Coal-Forming Material on Hydrogen and Carbon Isotopic Compositions of Thermogenic Coalbed Gas:Thermal Simulation of Herbaceous Marsh Peats Formed under Different Climatic Environments. Earth Science, 42(9): 1541-1548. doi: 10.3799/dqkx.2017.520
    Citation: Duan Yi, Duan Mingchen, Wu Yingzhong, Yao Jingli, Luo Anxiang, Deng Xiuqin, Qi Yalin, 2017. Impact of Formation Environment of Coal-Forming Material on Hydrogen and Carbon Isotopic Compositions of Thermogenic Coalbed Gas:Thermal Simulation of Herbaceous Marsh Peats Formed under Different Climatic Environments. Earth Science, 42(9): 1541-1548. doi: 10.3799/dqkx.2017.520

    Impact of Formation Environment of Coal-Forming Material on Hydrogen and Carbon Isotopic Compositions of Thermogenic Coalbed Gas:Thermal Simulation of Herbaceous Marsh Peats Formed under Different Climatic Environments

    doi: 10.3799/dqkx.2017.520
    • Received Date: 2016-12-28
    • Publish Date: 2017-09-15
    • The study of coalbed methane (CBM) can provide scientific basis for coalbed methane exploration and development. However, the hydrogen and carbon isotopic compositions of CBM are affected by many factors. Previous studies were mainly concerned with the influence of the properties of gas-forming parent material and maturity on the hydrogen and carbon isotopic compositions of CBM. The influence of formation environment of gas-forming parent material on the isotopic compositions of thermogenic CBM is still unclear. Closed-system isothermal pyrolysis experiments were performed on herbaceous marsh peats derived from high latitude area with cold and dry climates and low latitude area with tropical moist climate. The hydrogen and carbon isotopic compositions and their differences of the hydrocarbon gases (methane, ethane and propane) generated during the pyrolysis of the samples were studied. The results show that the hydrocarbon gases generated from the herbaceous swamp peat in high latitude area had lighter hydrogen and heavier carbon isotopic compositions compared with those in low latitude area. At pyrolysis intervals from peat to vitrinite reflectance values (Ro) of 2.5%, 3.5% and 5.5%, the differences in the average δD values between the samples in high latitude and low latitude areas were from -17‰ to -10‰ for methane, -32‰ to -28‰ for ethane and -25‰ to -17‰ for propane, and in the average δ13C values between them were 2.9‰ to 3.6‰ for methane and 0.9‰ to 1.1‰ for ethane, respectively. The differences should result from the influence of climatic environment on hydrogen and carbon isotopic compositions of coal-forming original material. The relationship between Ro values and the hydrogen and carbon isotopic compositions of gases generated by coal-forming organic matter under different climatic environments as well as the hydrogen or carbon isotopic relationships of methane and ethane were established. These results may provide a basis for studying on the genesis of coalbed gas formed by coal-forming material under different climatic environments.

       

    • loading
    • Berner, U., Faber, E., 1988.Maturity Related Mixing Model for Methane, Ethane and Propane, Based on Carbon Isotopes. Organic Geochemistry, 13(1-3):67-72.doi: 10.1016/0146-6380(88)90026-5
      Bi, X.H., Sheng, G.Y., Liu, X.H., et al., 2005.Molecular and Carbon and Hydrogen Isotopic Composition of n-Alkanes in Plant Leaf Waxes. Organic Geochemistry, 36(10):1405-1417.doi: 10.1016/j.orggeochem.2005.06.001
      Chikaraishi, Y., Naraoka, H., 2007. δ 13C and δ D Relationships among Three n-Alkyl Compound Classes (n-Alkanoic Acid, n-Alkane and n-Alkanol) of Terrestrial Higher Plants. Organic Geochemistry, 38:198-215. doi: 10.1016/j.orggeochem.2006.10.003
      Chikaraishi, Y., Naraoka, H., Poulson, S.R., 2004.Hydrogen and Carbon Isotopic Fractionations of Lipid Biosynthesis among Terrestrial (C3, C4 and CAM) and Aquatic Plants. Phytochemistry, 65(10):1369-1381.doi: 10.1016/j.phytochem.2004.03.036
      Clayton, J.L., 1998.Geochemistry of Coalbed Gas-A Review. International Journal of Coal Geology, 35(1-4):159-173.doi: 10.1016/s0166-5162(97)00017-7
      Criss, R.E., 1999.Principles of Stable Isotope Distribution.Oxford University Press Inc, New York.
      Dai, J.X., Qi, H.F., Song, Y., et al., 1986.Composition, Carbon Isotope Characteristics and the Origin of Coalbed Gases in China and Their Implications. Chinese Science Bulletin, 30(12):1324-1337(in Chinese). doi: 10.1360/yb1987-30-12-1324
      Dai, J.X., Qi, H.F., 1989.The Relationship between δ13C and Ro of Coal-Derived Gas in China. Chinese Science Bulletin, 34(9):690-692 (in Chinese).
      Dansgaard, W., 1964.Stable Isotopes in Precipitation. Tellus, 16(4):436-468.doi: 10.3402/tellusa.v16i4.8993
      Duan, Y., Duan, M.C., Sun, T., et al., 2016.Thermal Simulation Study on the Influence of Coal-Forming Material on the Isotopic Composition of Thermogenic Coalbed Gas. Geochemical Journal, 50(1):81-88.doi: 10.2343/geochemj.2.0386
      Duan, Y., He, J.X., Wu, B.X., et al., 2011.Composition and Genesis of n-Alkanes and their Hydrogen Isotope in Sediments from Saline Lake, China. Earth Science, 36(1):53-61(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201101007.htm
      Duan, Y., Wu, B.X., 2009.Hydrogen Isotopic Compositions and Their Environmental Significance for Individual n-Alkanes in Typical Plants from Land in China. Chinese Science Bulletin, 54(3):461-467.doi: 10.1007/s11434-008-0443-x
      Duan, Y., Wu, B.X., He, J.X., et al., 2011.Characterization of Gases and Solid Residues from Closed System Pyrolysis of Peat and Coals at Two Heating Rates. Fuel, 90(3):974-979.doi: 10.1016/j.fuel.2010.10.039
      Duan, Y., Wu, Y.Z., Yao, J.L., et al., 2013.Carbon and Hydrogen Isotopic Compositions and Their Evolutions of Gases Generated by Forest Marsh Peat at Different Thermal Maturity Stages. Earth Science, 38(1):87-93(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201301012.htm
      Edwards, T.W.D., Graf, W., Trimborn, P., et al., 2000. δ13C Response Surface Resolves Humidity and Temperature Signals in Trees. Geochimica et Cosmochimica Acta, 64:161-167. doi: 10.1016/S0016-7037(99)00289-6
      Francey, R.J., Farquhar, G.D., 1982.An Explanation of 13C/12C Variations in Tree Rings. Nature, 297(5861):28-31.doi: 10.1038/297028a0
      Gu, S., Cai, J.H., Chang, D.W., et al., 2015.Reducing Formation Damage to Low-Porosity and Low-Permeability CBM Reservoirs Using Calcium Carbonate Nanoparticles. Earth Science, 40(6):1093-1100(in Chinese with English abstract).
      Kotarba, M.J., Rice, D.D., 2001.Composition and Origin of Coalbed Gases in the Lower Silesian Basin, Southwest Poland. Applied Geochemistry, 16(7-8):895-910.doi: 10.1016/s0883-2927(00)00058-5
      Kotarba, M., 1990.Isotopic Geochemistry and Habitat of the Natural Gases from the Upper Carboniferous Žacle Coal-Bearing Formation in the Nowa Ruda Coal District (Lower Silesia, Poland). Organic Geochemistry, 16(1-3):549-560.doi: 10.1016/0146-6380(90)90069-c
      Liu, Q.Y., Liu, W.H., Dai, J.X., 2007.Characterization of Pyrolysates from Maceral Components of Tarim Coals in Closed System Experiments and Implications to Natural Gas Generation. Organic Geochemistry, 38(6):921-934.doi: 10.1016/j.orggeochem.2007.02.002
      Pedentchouk, N., Sumner, W., Tipple, B., et al., 2008. δ13C and δ D Compositions of n-Alkanes from Modern Angiosperms and Conifers:An experimental Set up in Central Washington State, USA. Organic Geochemistry, 39:1066-1071. doi: 10.1016/j.orggeochem.2008.02.005
      Qin, Y., Tang, X.Y., Ye, J.P., et al., 2000.Characteristics and Origins of Stable Carbon Isotope in Coalbed Methane of China. Journal of China University of Mining & Technology, 29(2):113-119(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKD200002000.htm
      Rao, P.L.S., Rasheed, M.A, Hasan, S.Z, et al., 2014.Role of Geochemistry in Coalbed Methane-A Review. Geosciences, 4(2):29-32. http://www.sapub.org/global/showpaperpdf.aspx?doi=10.5923/j.geo.20140402.01
      Rice, D.D., 1993.Composition and Origins of Coalbed Gas.Hydrocarbons from Coal.In:Law, B.E., Rice, D.D., eds., Hydrocarbons from Coal.AAPG Studies in Geology Series 38, AAPG, Tulsa, 159-184. http://www.searchanddiscovery.com/documents/rice/index.htm
      Rice, D.D., 1993.Composition and Origins of Coalbed Gas.In:Law, B.E., Rice, D.D., eds., Hydrocarbons from Coal.AAPG Studies in Geology Series 38, Tulsa, 159-184.
      Rozanski, K., Arguas, L., Gongiantini, R., 1993.Isotope Patterns in Modern Global Precipitation, In:Swart, P.K., Lohmann, K.C., McKenzie, J., et al., eds., Climate Change in Continental Isotope Records.American Geophysical Union, Geophysical Monograph 78, Washington, D.C., 1-36.
      Sessions, A.L., 2006.Seasonal Changes in D/H Fractionation Accompanying Lipid Biosynthesis in Spartina Alterniflora. Geochimica et Cosmochimica Acta, 70(9):2153-2162.doi: 10.1016/j.gca.2006.02.003
      Song, Y., Liu, S.B., Hong, F., et al., 2012.Geochemical Characteristics and Genesis of Coalbed Methane in China. Acta Petrolei Sinica, 33(z1):99-106(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB2012S1014.htm
      Song, Y., Liu, S.B., Zhang, Q., et al., 2012.Coalbed Methane Genesis, Occurrence and Accumulation in China. Petroleum Science, 9(3):269-280.doi: 10.1007/s12182-012-0209-6
      Stahl, W.J., Carey, B.D., 1975.Source-Rock Identification by Isotope Analyses of Natural Gases from Fields in the Val Verde and Delaware Basins, West Texas. Chemical Geology, 16(4):257-267.doi: 10.1016/0009-2541(75)90065-0
      Wang, G., Qin, Y., Xie, Y.W., et al., 2016.Geochemical Characteristics and Its Origin of Cbm in Gujiao Blocks. Journal of China Coal Society, 41(5):1180-1187(in Chinese with English abstract).
      Zhang, L., Luo, J., Cui, G.D., et al., 2016.Mechanisms of Cold Shock during Coalbed Fracturing Assisted with Cryogenic Gases. Earth Science, 41(4):664-674(in Chinese with English abstract).
      戴金星, 戚厚发, 1989.我国煤成气的δ13C-Ro关系.科学通报, 34(9):690-692.
      段毅, 吴应忠, 姚泾利, 等, 2013.森林沼泽泥炭不同演化阶段气体碳氢同位素演化特征.地球科学, 38(1):87-93. http://www.earth-science.net/WebPage/Article.aspx?id=2346
      段毅, 何金先, 吴保祥, 等, 2011.咸水湖泊沉积物中正构烷烃及其氢同位素组成与成因.地球科学, 36(1):53-61. http://www.earth-science.net/WebPage/Article.aspx?id=2064
      谷穗, 蔡记华, 常德武, 等, 2015.使用纳米碳酸钙降低低孔低渗煤层气储层伤害.地球科学, 40(6):1093-1100. http://www.earth-science.net/WebPage/Article.aspx?id=3095
      秦勇, 唐修义, 叶建平, 等, 2000.中国煤层甲烷稳定碳同位素分布与成因探讨.中国矿业大学学报, 29(2):113-119. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200002000.htm
      宋岩, 柳少波, 洪峰, 等, 2012.中国煤层气地球化学特征及成因.石油学报, 33(z1):99-106. doi: 10.3969/j.issn.1001-8719.2012.z1.023
      汪岗, 秦勇, 解奕炜, 等, 2016.古交区块煤层气地球化学特征及其成因.煤炭学报, 41(5):1180-1187. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201605017.htm
      张亮, 罗炯, 崔国栋, 等, 2016.低温气体辅助煤层气压裂中的冷冲击机理.地球科学, 41(4):664-674. http://www.earth-science.net/WebPage/Article.aspx?id=3283
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)  / Tables(3)

      Article views (4277) PDF downloads(20) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return