• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 42 Issue 8
    Aug.  2017
    Turn off MathJax
    Article Contents
    Feng Qihong, Xu Shiqian, Wang Sen, Yang Yi, Gao Fangfang, Xu Yajuan, 2017. A Stochastic Permeability Model for Shale Gas Reservoirs Based on Embedded Discrete Fracture Model. Earth Science, 42(8): 1301-1313. doi: 10.3799/dqkx.2017.551
    Citation: Feng Qihong, Xu Shiqian, Wang Sen, Yang Yi, Gao Fangfang, Xu Yajuan, 2017. A Stochastic Permeability Model for Shale Gas Reservoirs Based on Embedded Discrete Fracture Model. Earth Science, 42(8): 1301-1313. doi: 10.3799/dqkx.2017.551

    A Stochastic Permeability Model for Shale Gas Reservoirs Based on Embedded Discrete Fracture Model

    doi: 10.3799/dqkx.2017.551
    • Received Date: 2017-02-28
    • Publish Date: 2017-08-15
    • Shale reservoirs have different types of pore spaces, however, relevant studies on measuring the apparent permeability (AP) of shale gas reservoirs with considering different pore space have not been reported. A stochastic permeability model is proposed based on the embedded discrete fracture model (EDFM) in this study, which includes four steps. (1) The spatial distribution model of natural fracture, organic matter and inorganic matter is established. (2) Different permeability calculation methods are selected for different types of pore space. (3) The numerical simulation model is established on the basis of EDFM, using the spatial distribution model and different permeability calculation methods. (4) The gas flow rate is obtained by numerical simulation method after giving different pressures at the inlet and outlet of the model. Then the AP of this shale gas reservoir can be measured through the Darcy's law. The results of the model are in good agreement with the experimental results reported in literature. The effect of different pore space types, distribution and some other characteristics were analyzed. Results show that the contribution of natural fractures to AP is greater than that of matrix pores. Therefore it is crucial to take the effect of different pore space types into account in the process of calculating shale gas AP.

       

    • loading
    • Agrawal, A., Prabhu, S.V., 2008.Survey on Measurement of Tangential Momentum Accommodation Coefficient.Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 26(4):634-645.doi: 10.1116/1.2943641
      Akkutlu, I.Y., Fathi, E., 2012.Multiscale Gas Transport in Shales with Local Kerogen Heterogeneities.SPE Journal, 17(4):1002-1011.doi: 10.2118/146422-pa
      Cai, J.C., Sun, S.Y., 2013.Fractal Analysis of Fracture Increasing Spontaneous Imbibition in Porous Media with Gas-Saturated.International Journal of Modern Physics C, 24(8):1350056.doi:org/ 10.1142/S0129183113500563.
      Cai, J.C., Wei, W., Hu, X.Y., et al., 2017.Fractal Characterization of Dynamic Fracture Network Extension in Porous Media.Fractals, 25(2):1750023.doi:10.1142/S0218348X17500232" target="_blank">http:org/ 10.1142/S0218348X17500232
      Civan, F., 2010.Effective Correlation of Apparent Gas Permeability in Tight Porous Media.Transport in Porous Media, 82(2):375-384.doi: 10.1007/s11242-009-9432-z
      Darabi, H., Ettehad, A., Javadpour, F., et al., 2012.Gas Flow in Ultra-Tight Shale Strata.Journal of Fluid Mechanics, 710:641-658.doi: 10.1017/jfm.2012.424
      Gale, J.F.W., Laubach, S.E., Olson, J.E., et al., 2014.Natural Fractures in Shale:A Review and New Observations.AAPG Bulletin, 98(11):2165-2216.doi: 10.1306/08121413151
      Grad, H., 1949.On the Kinetic Theory of Rarefied Gases.Communications on Pure and Applied Mathematics, 2(4):331-407.doi: 10.1002/cpa.3160020403
      Javadpour, F., 2009.Nanopores and Apparent Permeability of Gas Flow in Mudrocks (Shales and Siltstone).Journal of Canadian Petroleum Technology, 48(8):16-21.doi: 10.2118/09-08-16-da
      Javadpour, F., McClure, M., Naraghi, M.E., 2015.Slip-Corrected Liquid Permeability and Its Effect on Hydraulic Fracturing and Fluid Loss in Shale.Fuel, 160:549-559.doi: 10.1016/j.fuel.2015.08.017
      Jendele, L., Kutilek, M., 2005.Parameters Fitting of Soil Hydraulic Functions:Lognormal Pore Size Distribution in Bi-Modal Soils.Geophysical Research Abstracts, 7:02002.
      Kang, Y.S., Deng, Z., Wang, H.Y., et al., 2016.Fluid-Solid Coupling Physical Experiments and Their Implications for Fracturing Stimulations of Shale Gas Reservoirs.Earth Science, 41(8):1376-1383 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201608009.htm
      Kazemi, M., Takbiri-Borujeni, A., 2015.An Analytical Model for Shale Gas Permeability.International Journal of Coal Geology, 146:188-197.doi: 10.1016/j.coal.2015.05.010
      Kuila, U., Prasad, M., 2013.Specific Surface Area and Pore-Size Distribution in Clays and Shales.Geophysical Prospecting, 61(2):341-362.doi: 10.1111/1365-2478.12028
      Kutílek, M., Jendele, L., Panayiotopoulos, K.P., 2006.The Influence of Uniaxial Compression upon Pore Size Distribution in Bi-Modal Soils.Soil and Tillage Research, 86(1):27-37.doi: 10.1016/j.still.2005.02.001
      Li, L.Y., Lee, S.H., 2008.Efficient Field-Scale Simulation of Black Oil in a Naturally Fractured Reservoir through Discrete Fracture Networks and Homogenized Media.SPE Reservoir Evaluation & Engineering, 11(4):750-758.doi: 10.2118/103901-pa
      Li, S.F., Wang, S.L., Bi, J.X., 2016.Characteristics of Xujiahe Formation Source Rock and Process of Hydrocarbon-Generation Evolution in Puguang Area.Earth Science, 41(5):843-852 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201605010.htm
      Loucks, R.G., Reed, R.M., Ruppel, S.C., et al., 2012.Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores.AAPG Bulletin, 96(6):1071-1098.doi: 10.1306/08171111061
      Loucks, R.G., Reed, R.M., Ruppel, S.C., Hammes, U., 2010.Preliminary Classification of Matrix Pores in Mudrocks.Gulf Coast Association of Geological Societies Transactions, 60:435-441.
      McCain Jr, W.D., 1991.Reservoir-Fluid Property Correlations—State of the Art.SPE Reservoir Engineering, 6(2):266-272.doi:org/ 10.2118/18571-PA
      Naraghi, M.E., Javadpour, F., 2015.A Stochastic Permeability Model for the Shale-Gas Systems.International Journal of Coal Geology, 140:111-124.doi: 10.1016/j.coal.2015.02.004
      Shakiba, M., Sepehrnoori, K., 2015.Using Embedded Discrete Fracture Model (EDFM) and Microseismic Monitoring Data to Characterize the Complex Hydraulic Fracture Networks.SPE Annual Technical Conference and Exhibition, Dubai.
      Singh, H., Javadpour, F., Ettehadtavakkol, A., et al., 2014.Nonempirical Apparent Permeability of Shale.SPE Reservoir Evaluation & Engineering, 17(3):414-424.doi: 10.2118/170243-pa
      Sun, J.L., Gamboa, E.S., Schechter, D., et al., 2016.An Integrated Workflow for Characterization and Simulation of Complex Fracture Networks Utilizing Microseismic and Horizontal Core Data.Journal of Natural Gas Science and Engineering, 34:1347-1360.doi: 10.1016/j.jngse.2016.08.024
      Vafaie, A., Habibnia, B., Moallemi, S.A., 2015.Experimental Investigation of the Pore Structure Characteristics of the Garau Gas Shale Formation in the Lurestan Basin, Iran.Journal of Natural Gas Science and Engineering, 27:432-442.doi: 10.1016/j.jngse.2015.06.029
      Wang, S., Feng, Q.H., Javadpour, F., et al., 2016a.Breakdown of Fast Mass Transport of Methane through Calcite Nanopores.The Journal of Physical Chemistry C, 120(26):14260-14269.doi: 10.1021/acs.jpcc.6b05511
      Wang, S., Javadpour, F., Feng, Q.H., 2016b.Confinement Correction to Mercury Intrusion Capillary Pressure of Shale Nanopores.Scientific Reports, 6:20160.doi: 10.1038/srep20160
      Wang, S., Javadpour, F., Feng, Q.H., 2016c.Fast Mass Transport of Oil and Supercritical Carbon Dioxide through Organic Nanopores in Shale.Fuel, 181:741-758.doi: 10.1016/j.fuel.2016.05.057
      Wu, S.T., Zou, C.N., Zhu, R.K.et al., 2015.Reservoir Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin.Earth Science, 40(11):1810-1823 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201511004.htm
      Xu, Y.F., 2015.Implementation and Application of the Embedded Discrete Fracture Model (EDFM) for Reservoir Simulation in Fractured Reservoirs (Dissertation).University of Texas at Austin, Austin.
      Xu, Y.F., CavalcanteFilho, J.S.A., Yu, W., et al.2016.Discrete-Fracture Modeling of Complex Hydraulic-Fracture Geometries in Reservoir Simulators.SPE Reservoir Evaluation & Engineering, 20(2):SPE-183647-PA.doi: org/10.2118/183647-PA
      Yang, F., Ning, Z.F., Hu, C.P., et al., 2013a.Characterization of Microscopic Pore Structures in Shale Reservoirs.ActaPetroleiSinica, 34(2):301-311 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201302013.htm
      Yang, F., Ning, Z.F., Kong, D.T., et al., 2013b.Pore Structure of Shale from High Pressure Mercury Injection and Nitrogen Adsorption Method.Natural Gas Geoscience, 24(3):450-455 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201303002.htm
      Yang, Y.F., Wang C.C., Yao, J., et al., 2016.A New Method for Microscopic Pore Structure Analysis in Shale Matrix.Earth Science, 41(6):1067-1073 (in Chinese with English abstract).
      Zhang, L.H., Li, J.Y., Li, Z., et al., 2105.Development Characteristics and Formation Mechanism of Intra-Organic Reservoir Space in Lacustrine Shales.Earth Science, 40(11):1824-1833 (in Chinese with English abstract). http://europepmc.org/articles/PMC5024126/
      Zuloaga-Molero, P., Yu, W., Xu, Y., et al., 2016.Simulation Study of CO2-EOR in Tight Oil Reservoirs with Complex Fracture Geometries.Scientific Reports, 6:33445.doi: 10.1038/srep33445
      康永尚, 邓泽, 王红岩, 等, 2016.流-固耦合物理模拟实验及其对页岩压裂改造的启示.地球科学, 41(8): 1376-1383. http://earth-science.net/WebPage/Article.aspx?id=3344
      李松峰, 王生朗, 毕建霞, 等, 2016.普光地区须家河组烃源岩特征及成烃演化过程.地球科学, 41(5): 843-852. http://earth-science.net/WebPage/Article.aspx?id=3306
      吴松涛, 邹才能, 朱如凯, 等, 2015.鄂尔多斯盆地上三叠统长7段泥页岩储集性能.地球科学, 40(11): 1810-1823. http://earth-science.net/WebPage/Article.aspx?id=3188
      杨峰, 宁正福, 胡昌蓬, 等, 2013a.页岩储层微观孔隙结构特征.石油学报, 34(2): 301-311. http://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201603007.htm
      杨峰, 宁正福, 孔德涛, 等, 2013b.高压压汞法和氮气吸附法分析页岩孔隙结构.天然气地球科学, 24(3): 450-455. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201303002.htm
      杨永飞, 王晨晨, 姚军, 等, 2016.页岩基质微观孔隙结构分析新方法.地球科学, 41(6): 1067-1073. doi: 10.11764/j.issn.1672-1926.2016.06.1067
      张林晔, 李钜源, 李政, 等, 2015.湖相页岩有机储集空间发育特点与成因机制.地球科学, 40(11): 1824-1833. http://earth-science.net/WebPage/Article.aspx?id=3189
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)  / Tables(4)

      Article views (5396) PDF downloads(28) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return