• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 42 Issue 10
    Oct.  2017
    Turn off MathJax
    Article Contents
    Huang Yunfei, Zhang Changmin, Zhu Rui, Yi Xuefei, Qu Jianhua, Tang Yong, 2017. Palaeoclimatology, Provenance and Tectonic Setting during Late Permian to Middle Triassic in Mahu Sag, Junggar Basin, China. Earth Science, 42(10): 1736-1749. doi: 10.3799/dqkx.2017.559
    Citation: Huang Yunfei, Zhang Changmin, Zhu Rui, Yi Xuefei, Qu Jianhua, Tang Yong, 2017. Palaeoclimatology, Provenance and Tectonic Setting during Late Permian to Middle Triassic in Mahu Sag, Junggar Basin, China. Earth Science, 42(10): 1736-1749. doi: 10.3799/dqkx.2017.559

    Palaeoclimatology, Provenance and Tectonic Setting during Late Permian to Middle Triassic in Mahu Sag, Junggar Basin, China

    doi: 10.3799/dqkx.2017.559
    • Received Date: 2016-12-25
    • Publish Date: 2017-10-18
    • A series of distinct biological and environmental events have occurred during the Permian-Triassic transitional period, which are mainly indicated by marine geological record. However, little study has been done on palaeoclimate and palaeoweathering on land in Early Triassic. In order to reconstruct the palaeoclimatological information, provenance and tectonic setting from Late Permian to Middle Triassic in Mahu sag, Junggar basin, bulk-rock major and trace elemental analyses were carried out on the core mudstone samples. Palaeoweathering condition and palaeoclimatology were reconstructed through various chemical weathering indices, while the provenance and tectonic setting were inferred from various discrimination diagrams. The chemical weathering switched from lower level to middle level from Late Permian to Early Triassic, and remained steady during the Early Triassic with minor weakened trend in the late Early Triassic, indicated by the CIA (Chemical Index of Alteration), CIW (Chemical Index of Weathering), WIP (Weathering Index of Parker) and PIA (Plagioclase Index of Alteration), which agrees with the global weathering evolutionary trend shown by Sr isotopes. The palaeoclimatology from Early to Middle Triassic was warm and wet seasonally, in comparison with the cool and dry environments during the Late Permian. However, the chemical weathering of Middle Triassic in Mahu sag did not weaken simultaneously with the global trend, but increased slightly, which might be a local event. In addition, the provenance of the Upper Permian Wuerhe Formation, Early Triassic Baikouquan Formation and Middle Triassic Kelamayi Formation should be felsic igneous rocks, and the tectonic setting during the formation of source rocks probably was the oceanic island arc setting.

       

    • loading
    • Armstrong-Altrin, J.S., Verma, S.P., 2005.Critical Evaluation of Six Tectonic Setting Discrimination Diagrams Using Geochemical Data of Neogene Sediments from Known Tectonic Settings.Sedimentary Geology, 177(1-2):115-129.doi: 10.1016/j.sedgeo.2005.02.004
      Benton, M.J., Newell, A.J., 2014.Impacts of Global Warming on Permo-Triassic Terrestrial Ecosystems.Gondwana Research, 25(4):1308-1337.doi: 10.1016/j.gr.2012.12.010
      Benton, M.J., Tverdokhlebov, V.P., Surkov, M.V., 2004.Ecosystem Remodelling among Vertebrates at the Permian-Triassic Boundary in Russia.Nature, 432:97-100.doi: 10.1038/nature02950
      Bhatia, M.R., 1983.Plate Tectonics and Geochemical Composition of Sandstones.Journal of Geology, 91(6):611-627.doi: 10.1086/628922
      Bhatia, M.R., Crook, K.A.W., 1986.Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins.Contributions to Mineralogy and Petrology, 92(2):181-193.doi: 10.1007/BF00375292
      Brayard, A., Escarguel, G., Bucher, H., et al., 2009.Good Genes and Good Luck:Ammonoid Diversity and the End-Permian Mass Extinction.Science, 325(5944):1118-1121.doi: 10.1126/science.1174638
      Chen, B., Jahn, B.M., 2004.Genesis of Post-Collisional Granitoids and Basement Nature of the Junggar Terrane, NW China:Nd-Sr Isotope and Trace Element Evidence.Journal of Asian Earth Science, 23(5):691-703.doi: 10.1016/S1367-9120(03)00118-4
      Chen, J., Tong, J.N., Song, H.J., et al., 2015.Recovery Pattern of Brachiopods after the Permian-Triassic Crisis in South China.Palaeogeography, Palaeoclimatology, Palaeoecology, 433:91-105.doi: 10.1016/j.palaeo.2015.05.020
      Chen, Z.Q., Benton, M.J., 2012.The Timing and Pattern of Biotic Recovery Following the End-Permian Mass Extinction.Nature Geoscience, 5:375-383.doi: 10.1038/ngeo1475
      Chu, D.L., Tong, J.N., Song, H.J., et al., 2015.Lilliput Effect in Freshwater Ostracods during the Permian-Triassic Extinction.Palaeogeography, Palaeoclimatology, Palaeoecology, 435:38-52.doi: 10.1016/j.palaeo.2015.06.003
      Chu, D.L., Yu, J.X., Tong, J.N., et al., 2016.Biostratigraphic Correlation and Mass Extinction during the Permian-Triassic Transition in Terrestrial-Marine Siliciclastic Settings of South China.Global and Planetary Change, 146:67-88.doi: 10.1016/j.gloplacha.2016.09.009
      Cullers, R.L., 2000.The Geochemistry of Shales, Siltstones and Sandstones of Pennsylvanian-Permian Age, Colorado, USA:Implications for Provenance and Metamorphic Studies.Lithos, 51(3):181-203.doi: 10.1016/S0024-4937(99)00063-8
      Cullers, R.L., Podkovyrov, V.M., 2000.Geochemistry of the Mesoproterozoic Lakhanda Shales in Southeastern Yakutia, Russia:Implications for Mineralogical and Provenance Control, and Recycling.Precambrian Research, 104(1-2):77-93.doi: 10.1016/S0301-9268(00)00090-5
      Cullers, R.L., Podkovyrov, V.M., 2002.The Source and Origin of Terrigenous Sedimentary Rocks in the Mesoproterozoic Ui Group, Southeastern Russia.Precambrian Research, 117(3-4):157-183.doi: 10.1016/S0301-9268(02)00079-7
      Fedo, C.M., Nesbitt, H.W., Young, G.M., 1995.Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance.Geology, 23(10):921-924.doi:10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO; 2
      Feng, L.J., Chu, X.L., Zhang, Q.R., et al., 2003.CIA (Chemical Index of Alteration) and Its Applications in the Neoproterozoic Clastic Rocks.Earth Science Frontiers, 10(4):539-544 (in Chinese with English abstract).
      Gao, D., Cheng, R.H., Shen, Y.J., et al., 2016.Southwestern Provenance-Sedimentary System and Provenance Tectonic Setting of Eastern Sag in the North Yellow Sea Basin.Earth Science, 41(7):1171-1187 (in Chinese with English abstract).
      Girty, G.H., Ridge, D.L., Knaack, C., et al., 1996.Provenance and Depositional Setting of Paleozoic Chert and Argillite, Sierra Nevada, California.Journal of Sedimentary Research, 66(1):107-118.doi: 10.1306/D42682CA-2B26-11D7-8648000102C1865D
      Gong, Q.S., Huang, G.P., Ni, G.H., et al., 2010.Characteristics of Alluvial Fan in Baikouquan Formation of Wuerhe Oil Field in Junggar Basin and Petroleum Prospecting Significance.Acta Sedimentologica Sinica, 28(6):1135-1144 (in Chinese with English abstract).
      Gong, Y.M., Zong, R.W., 2015.Paleozoic Stratigraphy Regionalization and Paleogeographic Evolution in Western Junggar, Northwestern China.Earth Science, 40(3):461-484 (in Chinese with English abstract). http://www.academia.edu/20243398/Late_Paleozoic_paleogeographic_reconstruction_of_Western_Central_Asia_based_upon_paleomagnetic_data_and_its_geodynamic_implications
      Grasby, S.E., Beauchamp, B., Embry, A., et al., 2013.Recurrent Early Triassic Ocean Anoxia.Geology, 41(2):175-178.doi: 10.1130/G33599.1
      Grauvogel-Stamm, L., Ash, S.R., 2005.Recovery of the Triassic Land Flora from the End-Permian Life Crisis.Comptes Rendus Palevol, 4(6-7):593-608.doi: 10.1016/j.crpv.2005.07.002
      Hallam, A., Wignall, P.B., 1997.Mass Extinctions and Their Aftermath.Oxford University Press, New York, 320.
      Han, B.F., Ji, J.Q., Song, B., et al., 2006.Late Paleozoic Vertical Growth of Continental Crust around the Junggar Basin, Xinjiang, China (Part I):Timing of Post-Collisional Plutonism.Acta Petrologica Sinica, 22(5):1077-1086 (in Chinese with English abstract). http://www.oalib.com/paper/1472627
      Harnois, L., 1988.The CIW Index:A New Chemical Index of Weathering.Sedimentary Geology, 55(3-4):319-322.doi: 10.1016/0037-0738(88)90137-6
      Hayashi, K., Fujisawa, H., Holland, H.D., et al., 1997.Geochemistry of ~1.9 Ga Sedimentary Rocks from Northeastern Labrador, Canada.Geochimica et Cosmochimica Acta, 61(19):4115-5137.doi: 10.1016/S0016-7037(97)00214-7
      Huang, S., Qing, H.R., Huang, P., et al., 2008.Evolution of Strontium Isotope Composition of Seawater from Late Permian to Early Triassic Based on Study of Marine Carbonates, Zhongliangshan Mountain, Chongqing.Science China, Series D, 51:528-539.doi: 10.1007/s11430-008-0034-3
      Huang, Y.F., Tong, J.N, Fraiser, M.L., et al., 2014.Extinction Patterns among Bivalves in South China during the Permian-Triassic Crisis.Palaeogeography, Palaeoclimatology, Palaeoecology, 399:78-88.doi: 10.1016/j.palaeo.2014.01.030
      Huang, Y.F., Tong, J.N., Xiang, Y., et al., 2015.The Extinction and Delayed Recovery of Bivalves during the Permian-Triassic Crisis.Earth Science, 40(2):334-345 (in Chinese with English abstract).
      Joachimski, M.M., Lai, X., Shen, S., et al., 2012.Climate Warming in the Latest Permian and the Permian-Triassic Mass Extinction.Geology, 40(3):195-198.doi: 10.1130/G32707.1
      Kiehl, J.T., Shields, C.A., 2005.Climate Simulation of the Latest Permian:Implications for Mass Extinction.Geology, 33(9):757-760.doi: 10.1130/G21654.1
      Korte, C., Kozur, H.W., Brukschen, P., et al., 2003.Strontium Isotope Evolution of Late Permian and Triassic Seawater.Geochimica et Cosmochimica Acta, 67(1):47-62.doi: 10.1016/S0016-7037(02)01035-9
      Kump, L.R., Brantley, S.L., Arthur, M.A., 2000.Chemical Weathering, Atmospheric CO2, and Climate.Annual Review of Earth and Planetary Sciences, 28:611-667.doi: 10.1146/annurev.earth.28.1.611
      Kutzbach, J.E., Gallimore, R.G., 1989.Pangaean Climates:Megamonsoons of the Megacontinent.Journal of Geophysical Research, 94(D3):3341-3357.doi: 10.1029/JD094iD03p03341
      Liu, B., Xu, B., Meng, X.Y., et al., 2007.Study on the Chemical Index of Alteration of Neoproterozoic Strata in the Tarim Plate and Its Implications.Acta Petrologica Sinica, 23(7):1664-1670 (in Chinese with English abstract).
      Looy, C.V., Brugman, W.A., Dilcher, D.L., et al., 1999.The Delayed Resurgence of Equatorial Forests after the Permian-Triassic Ecologic Crisis.Proceedings of the National Academy of Sciences of the United States of America, 96(24):13857-13862.doi: 10.1073/pnas.96.24.13857
      Lupker, M., France-Lanord, C., Galy, V., et al., 2013.Increasing Chemical Weathering in the Himalayan System since the Last Glacial Maximum.Earth and Planetary Science Letters, 365:243-252.doi: 10.1016/j.epsl.2013.01.038
      Ma, Y.P., Huang, L.J., Teng, T.Y., et al., 2015.Study on the High-Resolution Sequence Stratigraphy of Triassic Baikouquan Formation in the Slope Zone of Mahu Depression in the Junggar Basin.Natural Gas Geoscience, 26 (Suppl.1):33-40 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYHN201405015.htm
      McLennan, S.M., 1993.Weathering and Global Denudation.The Journal of Geology, 101(2):295-303.doi: 10.1086/648222
      Nesbitt, H.W., Young, G.M., 1982.Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites.Nature, 299:715-717.doi: 10.1038/299715a0
      Nesbitt, H.W., Young, G.M., 1984.Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations.Geochimica et Cosmochimica Acta, 48(7):1523-1534.doi: 10.1016/0016-7037(84)90408-3
      Nützel, A., 2005.Recovery of Gastropods in the Early Triassic.Comptes Rendus Palevol, 4(6-7):501-515.doi: 10.1016/j.crpv.2005.02.007
      Orchard, M.J., 2007.Conodont Diversity and Evolution through the Latest Permian and Early Triassic Upheavals.Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2):93-117.doi: 10.1016/j.palaeo.2006.11.037
      Palmer, M.R., Edmond, J.M., 1989.The Strontium Isotope Budget of the Modern Ocean.Earth and Planetary Science Letters, 92(1):11-26.doi: 10.1016/0012-821X(89)90017-4
      Panahi, A., Young, G.M., Rainbird, R.H., 2000.Behavior of Major and Trace Elements (Including REE) during Paleoproterozoic Pedogenesis and Diagenetic Alteration of an Archean Granite near Ville Marie, Quebec, Canada.Geochimica et Cosmochimica Acta, 64(13):2199-2220.doi: 10.1016/S0016-7037(99)00420-2
      Parker, A., 1970.An Index of Weathering for Silicate Rocks.Geological Magazine, 107(6):501-504.doi: 10.1017/S0016756800058581
      Payne, J.L., Lehrmann, D.J., Wei, J.Y., et al., 2004.Large Perturbations of the Carbon Cycle during Recovery from the End-Permian Extinction.Science, 305(5683):506-509.doi: 10.1126/science.1097023
      Retallack, G.J., 1995.Permian-Triassic Life Crisis on Land.Science, 267:77-80.doi: 10.1126/science.267.5194.77
      Retallack, G.J., Sheldon, N.D., Carr, P.F., et al., 2011.Multiple Early Triassic Greenhouse Crises Impeded Recovery from Late Permian Mass Extinction.Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1-2):233-251.doi: 10.1016/j.palaeo.2010.09.022
      Retallack, G.J., Veevers, J.J., Morante, R., 1996.Global Coal Gap between Permian-Triassic Extinction and Middle Triassic Recovery of Peat-Forming Plants.Geological Society of America Bulletin, 108(2):195-207.doi:10.1130/0016-7606(1996)108<0195:GCGBPT>2.3.CO; 2
      Roscher, M., Stordal, F., Svensen, H., 2011.The Effect of Global Warming and Global Cooling on the Distribution of the Latest Permian Climate Zones.Palaeogeography, Palaepclimatology, Palaeoecology, 309(3-4):186-200.doi: 10.1016/j.palaeo.2011.05.042
      Sedlacek, A.R., Saltzman, M.R., Algeo, T.J., et al., 2014.87Sr/86Sr Stratigraphy from the Early Triassic of Zal, Iran:Linking Temperature to Weathering Rates and the Tempo of Ecosystem Recovery.Geology, 42(9):779-782.doi: 10.1130/G35545.1
      Sepkoski, J.J., 1981.A Factor Analytic Description of the Phanerozoic Marine Fossil Record.Paleobiology, 7(1):36-53. doi: 10.1017/S0094837300003778
      Sheldon, N.D., 2006.Abrupt Chemical Weathering Increase across the Permian-Triassic Boundary.Palaeogeography, Palaeoclimatology, Palaeoecology, 231(3-4):315-321.doi: 10.1016/j.palaeo.2005.09.001
      Shen, S.Z., Crowley, J.L., Wang, Y., et al., 2011.Calibrating the End-Permian Mass Extinction.Science, 334:1367-1372.doi: 10.1126/science.1213454
      Song, H.J., Tong, J.N., 2016.Mass Extinction and Survival during the Permian-Triassic Crisis.Earth Science, 41(6):901-918 (in Chinese with English abstract).
      Song, H.J., Wignall, P.B., Chen, Z.Q., et al., 2011.Recovery Tempo and Pattern of Marine Ecosystems after the End-Permian Mass Extinction.Geology, 39(8):739-742.doi: 10.1130/G32191.1
      Song, H.J., Wignall, P.B., Chu, D.L., et al., 2014.Anoxia/High Temperature Double Whammy during the Permian-Triassic Marine Crisis and Its Aftermath.Scientific Reports, 4:1-7.doi: 10.1038/srep04132
      Song, H.J., Wignall, P.B., Tong, J.N., et al., 2012.Geochemical Evidence from Bio-apatite for Multiple Oceanic Anoxic Events during Permian-Triassic Transition and the Link with End-Permian Extinction and Recovery.Earth and Planetary Science Letters, 353-354:12-21.doi: 10.1016/j.epsl.2012.07.005
      Song, H.J., Wignall, P.B., Tong, J.N., et al., 2013.Two Pulses of Extinction during the Permian-Triassic Crisis.Nature Geoscience, 6:52-56.doi: 10.1038/ngeo1649
      Song, H.J., Wignall, P.B., Tong, J.N., et al., 2015.Integrated Sr Isotope Variations and Global Environmental Changes through the Late Permian to Early Late Triassic.Earth and Planetary Science Letters, 424:140-147.doi: 10.1016/j.epsl.2015.05.035
      Song, L.J., Liu, C.Y., Zhao, H.G., et al., 2016.Geochemical Characteristics, Sedimentary Environment and Tectonic Setting of Huangqikou Formation, Ordos Basin.Earth Science, 41(8):1295-1308, 1321 (in Chinese with English abstract).
      Sun, Y., Joachimski, M.M., Wignall, P.B., et al., 2012.Lethally Hot Temperatures during the Early Triassic Greenhouse.Science, 338(6105):366-370.doi: 10.1126/science.1224126
      Tang, Y., Xu, Y., Qu, J.H., et al., 2014.Fan-Delta Group Characteristics and Its Distribution of the Triassic Baikouquan Reservoirs in Mahu Sag of Junggar Basin.Xinjiang Petroleum Geology, 35(6):628-635 (in Chinese with English abstract).
      Wang, Z.Q., Yin, C.Y., Gao, L.Z., et al., 2006.The Character of the Chemical Index of Alteration and Discussion of Subdivision and Correlation of the Nanhua System in Yichang Area.Geological Review, 52(5):577-585 (in Chinese with English abstract). doi: 10.1007/s11434-009-0443-5
      Ward, P.D., Montgomery, D.R., Smith, R., 2000.Altered River Morphology in South Africa Related to the Permian-Triassic Extinction.Science, 289(5485):1740-1743.doi: 10.1126/science.289.5485.1740
      Yang, J.H., Cawood, P.A., Du, Y.S., et al., 2014.Global Continental Weathering Trends across the Early Permian Glacial to Postglacial Transition:Correlating High-and Low-Paleolatitude Sedimentary Records.Geology, 42(10):835-838.doi: 10.1130/G35892.1
      Yang, J.H., Cawood, P.A., Du, Y.S., et al., 2016.Reconstructing Early Permian Tropical Climates from Chemical Weathering Indices.Geological Society of America Bulletin, 128(5-6):739-751.doi: 10.1130/B31371.1
      Yang, J.H., Du, Y.S., Cawood, P.A., et al., 2012.Modal and Geochemical Compositions of the Lower Silurian Clastic Rocks in North Qilian, NW China:Implications for Provenance, Chemical Weathering, and Tectonic Setting.Journal of Sedimentary Research, 82(2):92-103.doi: 10.2110/jsr.2012.6
      Ye, H., Zhang, K.X., Ji, J.L., et al., 2010.Major and Trace Element Characters of the Sediments and Paleoclimatic Evolvement during about 23.1-5.0 Ma in Xunhua Basin, Qinghai.Earth Science, 35(5):811-820 (in Chinese with English abstract).
      Young, G.M., 2002.Geochemical Investigation of a Neoproterozoic Glacial Unit:The Mineral Fork Formation in the Wasatch Range, Utah.Geological Society of America Bulletin, 114(4):387-399.doi:10.1130/0016-7606(2002)114<0387:GIOANG>2.0.CO; 2
      Young, G.M., Nesbitt, H.W., 1999.Paleoclimatology and Provenance of the Glaciogenic Gowganda Formation (Paleoproterozoic), Ontario, Canada:A Chemostratigraphic Approach.Geological Society of America Bulletin, 111(2):264-274.doi:10.1130/0016-7606(1999)111<0264:PAPOTG>2.3.CO; 2
      Yin, H.F., Xie, S.C., Luo, G.M., et al., 2012.Two Episodes of Environmental Change at the Permian-Triassic Boundary of the GSSP Section Meishan.Earth-Science Reviews, 115(3):163-172.doi: 10.1016/j.earscirev.2012.08.006
      Yu, J.X., Broutin, J., Chen, Z.Q., et al., 2015.Vegetation Changover across the Permian-Triassic Boundary in Southwest China.Extinction, Survival, Recovery and Palaeoclimate:A Critical Review.Earth-Science Reviews, 149:203-224.Doi: 10.1016/j.earscirev.2015.04.005
      Yu, X.H., Qu, J.H., Tan, C.P., et al., 2014.Conglomerate Lithofacies and Origin Models of Fan Deltas of Baikouquan Formation in Mahu Sag, Junngar Basin.Xinjiang Petroleum Geology, 35(6):619-627 (in Chinese with English abstract).
      Zhang, S.C., Zou, N.N., Shi, J.A., et al., 2015.Depositional Model of the Triassic Baikouquan Formation in Mabei Area of Junggar Basin.Oil & Gas Geology, 36(4):640-650 (in Chinese with English abstract).
      Zou, N.N., Shi, J.A., Zhang, D.Q., et al., 2015.Fan Delta Depositional Model of Triassic Baikouquan Formation in Mabei Area, NW Junggar Basin.Acta Sedimentologica Sinica, 33(3):607-615 (in Chinese with English abstract).
      Zou, Z.W., Li, H., Xu, Y., et al., 2015.Sedimentary Characteristics of the Baikouquan Formation, Lower Triassic in the Mahu Depression, Junggar Basin.Geological Science and Technology Information, 34(2):20-26 (in Chinese with English abstract).
      冯连君, 储雪蕾, 张启锐, 等, 2003.化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用.地学前缘, 10(4): 539-544. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200304027.htm
      高丹, 程日辉, 沈艳杰, 等, 2016.北黄海盆地东部坳陷侏罗纪西南物源-沉积体系与源区构造背景.地球科学, 41(7): 1171-1187. http://earth-science.net/WebPage/Article.aspx?id=3326
      宫清顺, 黄革萍, 倪国辉, 等, 2010.准噶尔盆地乌尔禾油田百口泉组冲积扇沉积特征及油气勘探意义.沉积学报, 28(6): 1135-1144. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201006012.htm
      龚一鸣, 纵瑞文, 2015.西准噶尔古生代地层区划及古地理演化.地球科学, 40(3): 461-484. http://earth-science.net/WebPage/Article.aspx?id=3028
      韩宝福, 季建清, 宋彪, 等, 2006.新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)——后碰撞深成岩浆活动的时限.岩石学报, 22(5): 1077-1086. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605003.htm
      黄云飞, 童金南, 向烨, 等, 2015.二叠纪-三叠纪之交双壳类的灭绝与复苏过程.地球科学, 40(2): 334-345. http://earth-science.net/WebPage/Article.aspx?id=3048
      刘兵, 徐备, 孟祥英, 等, 2007.塔里木板块新元古代地层化学蚀变指数研究及其意义.岩石学报, 23(7): 1664-1670. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200707011.htm
      马永平, 黄林军, 滕团余, 等, 2015.准噶尔盆地玛湖凹陷斜坡区三叠系百口泉组高精度层序地层研究.天然气地球科学, 26(增刊1): 33-40. http://youxian.cnki.com.cn/yxdetail.aspx?filename=CJXB20171024000&dbname=CAPJ2015
      宋海军, 童金南, 2016.二叠纪-三叠纪之交生物大灭绝与残存.地球科学, 41(6): 901-918. http://earth-science.net/WebPage/Article.aspx?id=3307
      宋立军, 刘池阳, 赵红格, 等, 2016.鄂尔多斯地区黄旗口组地球化学特征及其沉积环境与构造背景.地球科学, 41(8): 1295-1308, 1321. http://earth-science.net/WebPage/Article.aspx?id=3338
      唐勇, 徐洋, 瞿建华, 等, 2014.玛湖凹陷百口泉组扇三角洲群特征及分布.新疆石油地质, 35(6): 628-635. http://youxian.cnki.com.cn/yxdetail.aspx?filename=CJXB20170629000&dbname=CAPJ2015
      王自强, 尹崇玉, 高林志, 等, 2006.宜昌三斗坪地区南华系化学蚀变指数特征及南华系划分、对比的讨论.地质论评, 52(5): 577-585. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200605000.htm
      叶荷, 张克信, 季军良, 等, 2010.青海循化盆地23.1~5.0 Ma沉积地层中常量元素、微量元素组成特征及其古气候演变.地球科学, 35(5): 811-820. http://earth-science.net/WebPage/Article.aspx?id=2025
      于兴河, 瞿建华, 谭程鹏, 等, 2014.玛湖凹陷百口泉组扇三角洲砾岩岩相及成因模式.新疆石油地质, 35(6): 619-627. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201406002.htm
      张顺存, 邹妞妞, 史基安, 等, 2015.准噶尔盆地玛北地区三叠系百口泉组沉积模式.石油与天然气地质, 36(4): 640-650. doi: 10.11743/ogg20150414
      邹妞妞, 史基安, 张大权, 等, 2015.准噶尔盆地西北缘玛北地区百口泉组扇三角洲沉积模式.沉积学报, 33(3): 607-615. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201503021.htm
      邹志文, 李辉, 徐洋, 等, 2015.准噶尔盆地玛湖凹陷下三叠统百口泉组扇三角洲沉积特征.地质科技情报, 34(2): 20-26. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201502004.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(2)

      Article views (5863) PDF downloads(64) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return