• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 9
    Sep.  2019
    Turn off MathJax
    Article Contents
    Deng Yinan, Ren Jiangbo, Guo Qingjun, Wang Haifeng, Yu Zhe, Liu Chenhui, 2019. Trace Elements Geochemistry Characteristics of Seawater and Porewater in Deep-Water Basin, Western Pacific. Earth Science, 44(9): 3101-3114. doi: 10.3799/dqkx.2017.562
    Citation: Deng Yinan, Ren Jiangbo, Guo Qingjun, Wang Haifeng, Yu Zhe, Liu Chenhui, 2019. Trace Elements Geochemistry Characteristics of Seawater and Porewater in Deep-Water Basin, Western Pacific. Earth Science, 44(9): 3101-3114. doi: 10.3799/dqkx.2017.562

    Trace Elements Geochemistry Characteristics of Seawater and Porewater in Deep-Water Basin, Western Pacific

    doi: 10.3799/dqkx.2017.562
    • Received Date: 2017-02-09
    • Publish Date: 2019-09-15
    • The geochemical characteristics of seawater and porewater in the deep-water basin of western Pacific and its impact on the formation of polymetallic nodules in the sea are still lacking. Seawater and porewater samples were systematically collected in western Pacific. We analyzed the hydro-chemical characteristics in seawater and trace elements in seawater and porewater. The results indicate that DO and pH values show a decrease followed by a rise with depth, whereas SiO32-, NO3- and PO43- values exhibit the reverse change trend. The variations of trace elements in seawater show a same trend with nutrient values. Trace metals in porewater are enriched in seawater-sediment interface, and then this concentration increases by degradation of authigenic material located in 3-5 cm in surface sediment. We suggest that relatively high concentration of trace metals in bottom seawater was derived from biological process, and it led to enrichment of polymetallic nodule on extensive oxic surface sediment. Compared to other areas, metal elements (Sc, Cr, Ni, Pb, especially Cu and Co) which were dissolved from detrital component, might play a key role in nodule growth in western Pacific.

       

    • loading
    • Al, T. A., Clark, I. D., Kennell, L., et al., 2015. Geochemical Evolution and Residence Time of Porewater in Low-Permeability Rocks of the Michigan Basin, Southwest Ontario. Chemical Geology, 404:1-17. https://doi.org/10.1016/j.chemgeo.2015.03.005
      Algeo, T. J., Maynard, J. B., 2004. Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems. Chemical Geology, 206(3-4):289-318. https://doi.org/10.1016/j.chemgeo.2003.12.009
      Bi, S. J., Li, Z. K., Tang, K. F., et al., 2016. LA-ICP-MS in Situ Trace Element Analysis of Pyrite from Dongtongyu Gold Deposit and Its Metallogenic Significance, Xiaoqinling Gold District. Earth Science, 41(7):1121-1140 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201607005
      Cai, W. J., Hu, X. P., Huang, W. J., et al., 2011. Acidification of Subsurface Coastal Waters Enhanced by Eutrophication. Nature Geoscience, 4(11):766-770. https://doi.org/10.1038/ngeo1297
      Calvert, S. E., Pedersen, T. F., 1993. Geochemistry of Recent Oxic and Anoxic Marine Sediments:Implications for the Geological Record. Marine Geology, 113(1-2):67-88.https://doi.org/10.1016/0025-3227(93)90150-t doi: 10.1016/0025-3227(93)90150-T
      Canfield, D. E., Thamdrup, B., 2009. Towards a Consistent Classification Scheme for Geochemical Environments, or, Why We Wish the Term 'Suboxic' would Go Away.Geobiology, 7(4):385-392. https://doi.org/10.1111/j.1472-4669.2009.00214.x
      Charette, M. A., Sholkovitz, E. R., 2006. Trace Element Cycling in a Subterranean Estuary:Part 2. Geochemistry of the Pore Water. Geochimica et Cosmochimica Acta, 70(4):811-826. https://doi.org/10.1016/j.gca.2005.10.019
      Chen, F., Hu, Y., Feng, D., et al., 2016. Evidence of Intense Methane Seepages from Molybdenum Enrichments in Gas Hydrate-Bearing Sediments of the Northern South China Sea. Chemical Geology, 443:173-181. https://doi.org/10.1016/j.chemgeo.2016.09.029
      Chen, J. L., Shen, H. T., Han, X. Q., 1999. Analysis for Ferromanganese Minerals of the Pacific Oceanic Polymetallic Nodules and the Study for Its Origination. Acta Oceanologica Sinica, 21 (2):56-64 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SEAC199902007.htm
      Chen, R. F., Bada, J. L., 1994. The Fluorescence of Dissolved Organic Matter in Porewaters of Marine Sediments. Marine Chemistry, 45(1-2):31-42. https://doi.org/10.1016/0304-4203(94)90089-2
      Craig, H., Hayward, T., 1987. Oxygen Supersaturation in the Ocean:Biological versus Physical Contributions. Science, 235(4785):199-202. https://doi.org/10.1126/science.235.4785.199
      Crusius, J., Calvert, S., Pedersen, T., et al., 1996. Rhenium and Molybdenum Enrichments in Sediments as Indicators of Oxic, Suboxic and Sulfidic Conditions of Deposition. Earth and Planetary Science Letters, 145(1-4):65-78. https://doi.org/10.1016/s0012-821x(96)00204-x doi: 10.1016/S0012-821X(96)00204-X
      Dean, W. E., Gardner, J. V., Piper, D. Z., 1997. Inorganic Geochemical Indicators of Glacial-Interglacial Changes in Productivity and Anoxia on the California Continental Margin. Geochimica et Cosmochimica Acta, 61(21):4507-4518. https://doi.org/10.1016/s0016-7037(97)00237-8 doi: 10.1016/S0016-7037(97)00237-8
      Deng, Y. N., Guo, Q. J., Zhu, M. Y., et al., 2014. REE Geochemistry of Kerogen from Early Cambrian Black Rock Series in Western Hunan. Earth Science, 39(3):283-292 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201403004
      Deng, Y. N., Guo, Q. J., Zhu, M. Y., et al., 2015. Trace Element Geochemistry Characteristics of Niutitang Formation from Lower Cambrian Black Rock Series in Western Hunan. Bulletin of Mineralogy, Petrology and Geochemistry, 34(2):410-418 (in Chinese with English abstract).
      Diao, H. X., 1986. The Minimum Values Formation Mechanism of Vertical Profile for Dissolve Oxygen from Pacific. Acta Oceanologica Sinica, 80 (2):184-189 (in Chinese).
      Gaillard, J. F., Jeandel, C., Michard, G., et al., 1986. Interstitial Water Chemistry of Villefranche Bay Sediments:Trace Metal Diagenesis. Marine Chemistry, 18(2-4):233-247. https://doi.org/10.1016/0304-4203(86)90011-3
      Giblin, A. E., Weston, N. B., Banta, G. T., et al., 2010. The Effects of Salinity on Nitrogen Losses from an Oligohaline Estuarine Sediment. Estuaries and Coasts, 33(5):1054-1068. https://doi.org/10.1007/s12237-010-9280-7
      Graybeal, A. L., Heath, G. R., 1984. Remobilization of Transition Metals in Surficial Pelagic Sediments from the Eastern Pacific. Geochimica et Cosmochimica Acta, 48(5):965-975. https://doi.org/10.1016/0016-7037(84)90188-1
      Guo, Q. J., Deng, Y. N., Hippler, D., et al., 2016. REE and Trace Element Patterns from Organic-Rich Rocks of the Ediacaran-Cambrian Transitional Interval. Gondwana Research, 36:94-106. https://doi.org/10.1016/j.gr.2016.03.012
      Hagens, M., Middelburg, J. J., 2016. Generalised Expressions for the Response of pH to Changes in Ocean Chemistry. Geochimica et Cosmochimica Acta, 187:334-349. https://doi.org/10.1016/j.gca.2016.04.012
      Hamme, R. C., Emerson, S. R., 2006. Constraining Bubble Dynamics and Mixing with Dissolved Gases:Implications for Productivity Measurements by Oxygen Mass Balance. Journal of Marine Research, 64(1):73-95. https://doi.org/10.1357/002224006776412322
      Hammond, D. E., McManus, J., Berelson, W. M., et al., 1996. Early Diagenesis of Organic Material in Equatorial Pacific Sediments:Stpichiometry and Kinetics. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 43(4-6):1365-1412. https://doi.org/10.1016/0967-0645(96)00027-6
      Han, X. Q., Jin, X. L., Yang, S. F., et al., 2003. Rhythmic Growth of Pacific Ferromanganese Nodules and Their Milankovitch Climatic Origin. Earth and Planetary Science Letters, 211(1-2):143-157. https://doi.org/10.1016/s0012-821x(03)00169-9 doi: 10.1016/S0012-821X(03)00169-9
      He, G. W., Sun, X. M., Yang, S. X., et al., 2011.A Comparison of REE Geochemistry between Polymetallic Nodules and Cobalt-Rich Crusts in the Pacific Ocean. Geology in China, 38 (2):462-472(in Chinese with English abstract).
      Kim, J., Hyeong, K., Jung, H. S., et al., 2006. Southward Shift of the Intertropical Convergence Zone in the Western Pacific during the Late Tertiary:Evidence from Ferromanganese Crusts on Seamounts West of the Marshall Islands. Paleoceanography, 21(4):247-257. https://doi.org/10.1029/2006pa001291 doi: 10.1029/2006PA001291
      Klinkhammer, G. P., 1980. Early Diagenesis in Sediments from the Eastern Equatorial Pacific, Ⅱ. Pore Water Metal Results. Earth and Planetary Science Letters, 49(1):81-101. https://doi.org/10.1016/0012-821x(80)90151-x doi: 10.1016/0012-821X(80)90151-X
      Klinkhammer, G.P., Heggie, D. T., Graham, D. W., 1982. Metal Diagenesis in Oxic Marine Sediments. Earth and Planetary Science Letters, 61(2):211-219. https://doi.org/10.1016/0012-821x(82)90054-1 doi: 10.1016/0012-821X(82)90054-1
      Li, L., Yao, G. Q., Liu, Y. H., et al., 2015. Major and Trace Elements Geochemistry and Geological Implications of Dolomite-Bearing Mudstones in Lower Part of Shahejie Formation in Tanggu Area, Eastern China. Earth Science, 40(9):1480-1496 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201509003
      Machida, S., Fujinaga, K., Ishii, T., et al., 2016. Geology and Geochemistry of Ferromanganese Nodules in the Japanese Exclusive Economic Zone around Minamitorishima Island.Geochemical Journal, 50(6):539-555. https://doi.org/10.2343/geochemj.2.0419
      Madison, A. S., Tebo, B. M., Mucci, A., et al., 2013. Abundant Porewater Mn (Ⅲ) is a Major Component of the Sedimentary Redox System. Science, 341(6148):875-878. https://doi.org/10.1126/science.1241396
      Marchig, V., von Stackelberg, U., Hufnagel, H., et al., 2001. Compositional Changes of Surface Sediments and Variability of Manganese Nodules in the Peru Basin. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 48(17-18):3523-3547. https://doi.org/10.1016/s0967-0645(01)00055-8 doi: 10.1016/S0967-0645(01)00055-8
      Martynova, M. V., 2014. Exchange of Manganese Compounds between Bottom Sediments and Water:2. Manganese Flux from Bed into Water (A Brief Review of Studies). Water Resources, 41(2):178-187. https://doi.org/10.1134/s0097807814020092 doi: 10.1134/S0097807814020092
      Middag, R., de Baar, H. J. W., Laan, P., et al., 2009. Dissolved Aluminium and the Silicon Cycle in the Arctic Ocean. Marine Chemistry, 115(3-4):176-195. https://doi.org/10.1016/j.marchem.2009.08.002
      Middag, R., van Hulten, M. M. P., van Aken, H. M., et al., 2015. Dissolved Aluminium in the Ocean Conveyor of the West Atlantic Ocean:Effects of the Biological Cycle, Scavenging, Sediment Resuspension and Hydrography. Marine Chemistry, 177:69-86. https://doi.org/10.1016/j.marchem.2015.02.015
      Morford, J. L., Martin, W. R., Kalnejais, L. H., et al., 2007. Insights on Geochemical Cycling of U, Re and Mo from Seasonal Sampling in Boston Harbor, Massachusetts, USA. Geochimica et Cosmochimica Acta, 71(4):895-917. https://doi.org/10.1016/j.gca.2006.10.016
      Morford, J. L., Emerson, S., 1999. The Geochemistry of Redox Sensitive Trace Metals in Sediments. Geochimica et Cosmochimica Acta, 63(11-12):1735-1750. https://doi.org/10.1016/s0016-7037(99)00126-x doi: 10.1016/S0016-7037(99)00126-X
      Morford, J. L., Emerson, S. R., Breckel, E. J., et al., 2005. Diagenesis of Oxyanions (V, U, Re, and Mo) in Pore Waters and Sediments from a Continental Margin. Geochimica et Cosmochimica Acta, 69(21):5021-5032. https://doi.org/10.1016/j.gca.2005.05.015
      Morford, J. L., Russell, A. D., Emerson, S., 2001. Trace Metal Evidence for Changes in the Redox Environment Associated with the Transition from Terrigenous Clay to Diatomaceous Sediment, Saanich Inlet, BC. Marine Geology, 174(1-4):355-369. https://doi.org/10.1016/s0025-3227(00)00160-2 doi: 10.1016/S0025-3227(00)00160-2
      Müller, P.J., Hartmann, M., Suess, E., 1988. The Chemical Environment of Pelagic Sediments. In: Halbach, P., Friedrich, G., Stackelberg, U. V., eds., The Manganese Nodule Belt of the Pacific Ocean Geological Environment, Nodule Formation, and Mining Aspects. Ferdinand Enke, Stuttgart, 70-90.
      Ni, J. Y., Liu, X. Q., Zhao, H. Q., et al., 2011. Nutrients Distribution in The Middle-to-Low Latitude Zone of North Pacific. Marine Geology and Quaternary Geology. 31(2):11-19 (in Chinese with English abstract). doi: 10.3724/SP.J.1140.2011.02011
      Pi, D. H., Liu, C. Q., Shields-Zhou, G. A., et al., 2013. Trace and Rare Earth Element Geochemistry of Black Shale and Kerogen in the Early Cambrian Niutitang Formation in Guizhou Province, South China:Constraints for Redox Environments and Origin of Metal Enrichments. Precambrian Research, 225:218-229. https://doi.org/10.1016/j.precamres.2011.07.004
      Piper, D. Z., Perkins, R. B., 2004. A Modern vs. Permian Black Shale-The Hydrography, Primary Productivity, and Water-Column Chemistry of Deposition. Chemical Geology, 206(3-4):177-197. https://doi.org/10.1016/j.chemgeo.2003.12.006 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_0814659b436262095d34e068beeef98f
      Santos-Echeandia, J., Prego, R., Cobelo-García, A., et al., 2009. Porewater Geochemistry in a Galician Ria (NW Iberian Peninsula):Implications for Benthic Fluxes of Dissolved Trace Elements (Co, Cu, Ni, Pb, V, Zn). Marine Chemistry, 117(1-4):77-87. https://doi.org/10.1016/j.marchem.2009.05.001
      Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J., et al., 1998. Simulated Response of the Ocean Carbon Cycle to Anthropogenic Climate Warming. Nature, 393(6682):245-249. https://doi.org/10.1038/30455
      Schlitzer, R., 2004. Export Production in the Equatorial and North Pacific Derived from Dissolved Oxygen, Nutrient and Carbon Data. Journal of Oceanography, 60(1):53-62. https://doi.org/10.1023/b:joce.0000038318.38916.e6 doi: 10.1023/B:JOCE.0000038318.38916.e6
      Sholkovitz, E. R., Shaw, T. J., Schneider, D. L., 1992. The Geochemistry of Rare Earth Elements in the Seasonally Anoxic Water Column and Porewaters of Chesapeake Bay. Geochimica et Cosmochimica Acta, 56(9):3389-3402. https://doi.org/10.1016/0016-7037(92)90386-w doi: 10.1016/0016-7037(92)90386-W
      Skrabal, S. A., Terry, C. M., 2002. Distributions of Dissolved Titanium in Porewaters of Estuarine and Coastal Marine Sediments. Marine Chemistry, 77(2-3):109-122. https://doi.org/10.1016/s0304-4203(01)00077-9 doi: 10.1016/S0304-4203(01)00077-9
      Tanaka, S. S., Watanabe, Y. W., Ono, T., et al., 2013. Spatial High-Resolution Estimation of Net Oxygen Production during Spring Bloom in the Western North Pacific Using Dissolved Oxygen, Nitrogen and Argon. Marine Chemistry, 149:85-95. https://doi.org/10.1016/j.marchem.2013.01.001
      Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies:An Update. Chemical Geology, 232(1-2):12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012
      van Hulten, M. M. P., Sterl, A., Tagliabue, A., et al., 2013. Aluminium in an Ocean General Circulation Model Compared with the West Atlantic Geotraces Cruises. Journal of Marine Systems, 126:3-23. https://doi.org/10.1016/j.jmarsys.2012.05.005
      Wegorzewski, A. V., Kuhn, T., 2014. The Influence of Suboxic Diagenesis on the Formation of Manganese Nodules in the Clarion Clipperton Nodule Belt of the Pacific Ocean. Marine Geology, 357:123-138. https://doi.org/10.1016/j.margeo.2014.07.004
      Xiang, L., Cai, C. F., He, X. Y., et al., 2015. Ocean Redox State Evolution and Its Controlling Factors during Cambrian Terreneuvian Epoch:Evidence from Lijiatuo Section, South China. Earth Science, 40(7):1197-1214 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201507008
      Yarincik, K. M., Murray, R. W., Lyons, T. W., et al., 2000. Oxygenation History of Bottom Waters in the Cariaco Basin, Venezuela, over the Past 578, 000 Years:Results from Redox-Sensitive Metals (Mo, V, Mn, and Fe). Paleoceanography, 15(6):593-604. https://doi.org/10.1029/1999pa00040 doi: 10.1029/1999PA000401
      Zhang, F. Y., Yang, Q. H., Yin, R. G., et al., 2001. Material Source and Distribution Characteristics of Polymetallic Nodules in the Eastern Pacific. Acta Geologica Sinica, 75 (4):537-547 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzxe200104017.htm
      Zhang, H., Davison, W., Miller, S., et al., 1995. In Situ High Resolution Measurements of Fluxes of Ni, Cu, Fe, and Mn and Concentrations of Zn and Cd in Porewaters by DGT. Geochimica et Cosmochimica Acta, 59(20):4181-4192. https://doi.org/10.1016/0016-7037(95)00293-9
      Zhang, L. J., Yao, D., Liang, H. F., 1994. Geochemistry of Interstitial Water in Sediments from Eastern Pacific Basin. Geochemica, 23 (Suppl.):201-209 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQHX4S1.022.htm
      Zhang, W. Y., Zhang, F. Y., Zhu, K. C., et al., 2009. Fractal Research on Seamount Topography in the West Pacific Ocean. Geoscience, 23 (6):1138-1146 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200906020
      Zhao, L. H., Jin, X. L., Gao, J. Y., et al., 2010. The Effective Elastic Thickness of Lithosphere in the Mid-West Pacific and Its Geological Significance. Earth Science, 35(4):637-644 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201004014
      毕诗健, 李占轲, 唐克非, 等, 2016.小秦岭东桐峪金矿床黄铁矿LA-ICP-MS微量元素特征及其成矿意义.地球科学, 41(7):1121-1140. http://d.old.wanfangdata.com.cn/Periodical/dqkx201607005
      陈建林, 沈华悌, 韩喜球, 等, 1999.太平洋多金属结核中铁锰矿物分析及成因研究.海洋学报, 21(2):56-64. http://www.cnki.com.cn/Article/CJFDTotal-SEAC199902007.htm
      邓义楠, 郭庆军, 朱茂炎, 等, 2014.湘西寒武纪早期黑色岩系中干酪根的稀土元素地球化学特征.地球科学, 39(3):283-292. http://d.old.wanfangdata.com.cn/Periodical/dqkx201403004
      邓义楠, 郭庆军, 朱茂炎, 等, 2015.湘西下寒武统牛蹄塘组黑色岩系的微量元素地球化学特征.矿物岩石地球化学通报, 34(2):410-418. doi: 10.3969/j.issn.1007-2802.2015.02.025
      刁焕祥, 1986.太平洋溶解氧垂直分布最小值形成机理的探讨.海洋学报, 80(2):184-189. http://www.cnki.com.cn/Article/CJFDTotal-SEAC198602007.htm
      何高文, 孙晓明, 杨胜雄, 等, 2011.太平洋多金属结核和富钴结壳稀土元素地球化学对比及其地质意义.中国地质, 38(2):462-472. doi: 10.3969/j.issn.1000-3657.2011.02.020
      李乐, 姚光庆, 刘永河, 等, 2015.塘沽地区沙河街组下部含云质泥岩主微量元素地球化学特征及地质意义.地球科学, 40(9):1480-1496. http://d.old.wanfangdata.com.cn/Periodical/dqkx201509003
      倪建宇, 刘小骐, 赵宏樵, 等, 2011.北太平洋中低纬度海区水体中营养盐的分布特征.海洋地质与第四纪地质, 31(2):11-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201102002
      向雷, 蔡春芳, 贺训云, 等, 2015.华南李家沱剖面寒武纪纽芬兰世海水氧化还原性质演化及其驱动因素.地球科学, 40(7):1197-1214. http://d.old.wanfangdata.com.cn/Periodical/dqkx201507008
      张富元, 杨群慧, 殷汝广, 等, 2001.东太平洋CC区多金属结核物质来源和分布规律.地质学报, 75(4):537-547. doi: 10.3321/j.issn:0001-5717.2001.04.013
      张丽洁, 姚德, 梁宏锋, 1994.东太平洋海盆沉积物间隙水地球化学研究.地球化学, 23 (增刊):201-209. http://www.cqvip.com/QK/92960X/1994C00/11005248.html
      章伟艳, 张富元, 朱克超, 等, 2009.西太平洋海域海山地形分形特征研究.现代地质, 23(6):1138-1146. doi: 10.3969/j.issn.1000-8527.2009.06.020
      赵俐红, 金翔龙, 高金耀, 等, 2010.中西太平洋海山区的岩石圈有效弹性厚度及其地质意义.地球科学, 35(4):637-644. http://d.old.wanfangdata.com.cn/Periodical/dqkx201004014
    • dqkx-44-9-3101-Table1-3.doc
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)

      Article views (5775) PDF downloads(120) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return