• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 43 Issue 11
    Nov.  2018
    Turn off MathJax
    Article Contents
    Lü Zhou, Wang Yupu, Li Li, Zhang Wenqi, Gu Fei, Zhang Yang, Yu Limin, Lin Xiaohai, 2018. Control Effect of Pore Throat Radius on Quality of Extra-Low and Ultra-Low Permeability Reservoir in Member 1 of Qingshankou Formation, Southern Songliao Basin. Earth Science, 43(11): 4204-4214. doi: 10.3799/dqkx.2017.578
    Citation: Lü Zhou, Wang Yupu, Li Li, Zhang Wenqi, Gu Fei, Zhang Yang, Yu Limin, Lin Xiaohai, 2018. Control Effect of Pore Throat Radius on Quality of Extra-Low and Ultra-Low Permeability Reservoir in Member 1 of Qingshankou Formation, Southern Songliao Basin. Earth Science, 43(11): 4204-4214. doi: 10.3799/dqkx.2017.578

    Control Effect of Pore Throat Radius on Quality of Extra-Low and Ultra-Low Permeability Reservoir in Member 1 of Qingshankou Formation, Southern Songliao Basin

    doi: 10.3799/dqkx.2017.578
    • Received Date: 2017-12-25
    • Publish Date: 2018-11-15
    • Among the uncertainties in development of extra-low and ultra-low permeability reservoirs in the Qingshankou Formation, it is clear that the main controlling factors of the porosity, permeability, oil saturation and mobility are important issues to be solved. The characteristic parameters of extra-low and ultra-low permeability reservoirs in the Qingshankou Formation of the southern Songliao basin were quantitatively characterized by mercury intrusion, nuclear magnetic resonance, pore-permeability measurement, grain size analysis and X-ray diffraction test in this study. The results show that the pore throat size of the ultra-low permeability reservoir in southern Songliao basin is mainly distributed between 0.3 μm and 1.7 μm, which is the main controlling factor of reservoir property and fluidity. The pore throat radius of more than 1.5 μm corresponds to the conventional low permeability reservoir, and the rock type of the reservoir is mainly composed of fine feldspar lithic sandstone. 0.5-1.5 μm pore throat corresponds to ultra-low permeability reservoir. The rock type is mainly composed of very fine feldspathic lithic sandstone and coarse siltstone. The moveable fluid saturation is more than 65%; 0.1-0.5 μm pore throat corresponds to ultra-low permeability reservoir, and the rock type is mainly coarse-fine siltstone, moveable fluid saturation between 50%-60%. It is concluded that pore throat radius which has been controlled by the sedimentary facies determines the characteristics of reservoir physical properties and fluid saturation, and it should be used as a significant parameter of reservoir evaluation.

       

    • loading
    • Amaefule, J.O., Altunbay, M., Tiab, D., et al., 1993.Enhanced Reservoir Description:Using 402 Core and Log Data to Identify Hydraulic (Flow) Units and Predict Permeability in Uncored Intervals/Wells.SPE Annual Technical Conference and Exhibition, Houston, 11:205-220.
      Huang, Z.K., Chen, J.P., Wang, Y.J., et al., 2013.Characteristics of Micropores in Mudstones of Cretaceous Qingshankou Formation, Songliao Basin.Acta Petrolei Sinica, 34(1):30-36 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201301004
      Feng, Z.Q., Jia, C.Z., Xie, X.N., et al., 2010.Tectonostratigraphic Units and Stratigraphic Sequences of the Nonmarine Songliao Basin, Northeast China.Basin Research, 22(1):79-95. doi: 10.1111/bre.2010.22.issue-1
      Knackstedt, M.A., Arns, C.H., Limaye, A., et al., 2004.Digital Core Laboratory:Properties of Reservoir Core Derived from 3D Images.Spwla Annual Logging Symposium, 56(5):66-68. doi: 10.2118/87009-MS
      Lai, J., Wang, G.W., Fan, Z.Y., et al., 2016.Insight into the Pore Structure of Tight Sandstones Using NMR and HPMI Measurements.Energy & Fuels, 30(12):10200-10214. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0efe05d8bd3a732872949f5ee2fedcd4
      Li, H.Y., Yue D.L., Zhang, X.J., 2012.Characteristics of Pore Structure and Reservoir Evaluation of Low Permeability Reservoir in Sulige Gas Field.Earth Science Frontiers, 19(2):133-140 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201202019
      Li, Q., 2002 Study of Subtle Oil/Gas Reservoirs Exploration in Changling Sag of Songliao Basin.Earth Science, 27(6):770-774 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200206021
      Nelson, P.H., 2009.Pore-Throat Sizes in Sandstones, Tight Sandstones, and Shales.AAPG Bulletin, 93(3):329-340. doi: 10.1306/10240808059
      Purcell, W.R., 1949.Capillary Pressures-Their Measurement Using Mercury and the Calculation of Permeability Therefrom.Journal of Petroleum Technology, 1(2):39-48. doi: 10.2118/949039-G
      Wang, G.Y., Liu, J.P., Jian, X.L., et al., 2016.Characteristics and Genetic Mechanism of Tight Sandstone Reservoirs of Lower Cretaceous in North Yellow Sea Basin.Earth Science, 41(3):523-532 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201603018.htm
      Xiao, D.S., Lu, S.F., Lu, Z.Y., et al., 2016.Combining Nuclear Magnetic Resonance and Rate-Controlled Porosimetry to Probe the Pore-Throat Structure of Tight Sandstones.Petroleum Exploration and Development, 43(6):961-970 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201606013
      Yang, Y.F., Wang, C.C., Yao, J., et al., 2016.A New Method for Microscopic Pore Structure Analysis in Shale Matrix.Earth Science, 41(6):1067-1073 (in Chinese with English abstract).
      Yang, Z.M., Zhang, Y.Z., Hao, M.Q., et al., 2006.Comprehensive Evaluation of Reservoir in Low-Permeability Oilfields.Acta Petrolei Sinica, 27(2):64-67 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb200602013
      Zhao, Y.J., Bao, Z.D., Wang, Z.Q., et al., 2011.Genesis of Eq2 Low Permeability Reservoir in Daqingzijing Oilfield in Southern Songliao Basin.Journal of Oil and Gas Technology, 33(7):32-36 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jhsyxyxb201107007
      Zhu, R.K., Wu, S.T., Cui, J.W., et al., 2016.Classification and Evaluation of Pore Size in Oil & Gas Reservoir Rocks.Geological Science and Technology Information, 35(3):133-144 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201501014
      黄振凯, 陈建平, 王义军, 等, 2013.松辽盆地白垩系青山口组泥岩微观孔隙特征.石油学报, 34(1):30-36. doi: 10.3969/j.issn.1671-4067.2013.01.009
      李海燕, 岳大力, 张秀娟, 2012.苏里格气田低渗透储层微观孔隙结构特征及其分类评价方法.地学前缘, 19(2):133-140. http://d.old.wanfangdata.com.cn/Periodical/dxqy201202019
      李群, 2002.松辽盆地长岭凹陷隐蔽油气藏勘探研究.地球科学, 27(6):770-774. doi: 10.3321/j.issn:1000-2383.2002.06.021
      王改云, 刘金萍, 简晓玲, 等, 2016.北黄海盆地下白垩统致密砂岩储层特征及成因.地球科学, 41(3):523-532. http://earth-science.net/WebPage/Article.aspx?id=3267
      肖佃师, 卢双舫, 陆正元, 等, 2016.联合核磁共振和恒速压汞方法测定致密砂岩孔喉结构.石油勘探与开发, 43(6):961-970. http://d.old.wanfangdata.com.cn/Periodical/syktykf201606013
      杨永飞, 王晨晨, 姚军, 等, 2016.页岩基质微观孔隙结构分析新方法.地球科学, 41(6):1067-1073. http://earth-science.net/WebPage/Article.aspx?id=3317
      杨正明, 张英芝, 郝明强, 等, 2006.低渗透油田储层综合评价方法.石油学报, 27(2):64-67. doi: 10.3321/j.issn:0253-2697.2006.02.013
      赵艳军, 鲍志东, 王志强, 等, 2011.松辽盆地南部大情字井油田青二段低渗透储层成因.石油天然气学报, 33(7):32-36. doi: 10.3969/j.issn.1000-9752.2011.07.007
      朱如凯, 吴松涛, 崔景伟, 等, 2016.油气储层中孔隙尺寸分级评价的讨论.地质科技情报, 35(3):133-144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016061700005413
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(5)

      Article views (4543) PDF downloads(35) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return