Citation: | Ge Yunfeng, Zhou Ting, Huo Shaolei, Xia Ding, Hu Yong, Zhong Peng, Zhang Li, 2019. Energy Transfer Mechanism during Movement and Accumulation of Rockslide Avalanche. Earth Science, 44(11): 3939-3949. doi: 10.3799/dqkx.2017.589 |
Booth-Gauthier, E. A., Alcoser, T. A., Yang, G., et al., 2012. Force-Induced Changes in Subnuclear Movement and Rheology. Biophysical Journal, 103(12): 2423-2431. https://doi.org/10.1016/j.bpj.2012.10.039
|
Chen, Z.G., Ge, Y.F., 2016. Forecast Analysis of Movement Distances of High-Speed and Long-Distance Landsides Based on Statistical Methods. Yangtze River, 47(12): 42-47 (in Chinese with English abstract).
|
Dong, Z.B., Yan, D.P., Zhang, Z.L., et al., 2014. Research on Methods of Sandbox Modeling and Case Study Based on Particle Image Velocimetry (PIV). Geoscience, 28(2): 321-330 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201402010
|
Dufresne, A., 2009. Influence of Runout Path Material on Rock and Debris Avalanche Mobility: Field Evidence and Analogue Modelling (Dissertation). University of Canterbury, Christchurch.
|
Eisbacher, G. H., 1979. Cliff Collapse and Rock Avalanches (Sturzstroms) in the Mackenzie Mountains, Northwestern Canada. Canadian Geotechnical Journal, 16(2): 309-334. doi: 10.1139/t79-032
|
Ge, Y.F., Tang, H.M., Li, W., et al., 2016. Evaluation for Deposit Areas of Rock Avalanche Based on Features of Rock Mass Sructure. Earth Science, 41(9):1583-1592 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.117 doi: 10.3799/dqkx.2016.117
|
Ge, Y.F., Tang, H.M., Xiong, C.R., et al., 2014.Effect of Sliding Plane Mechanical Parameters on Landslide Stability—A Case Study of Jiweishan Rockslide in Wulong, Chongqing. Chinese Journal of Rock Mechanics and Engineering, 33(Suppl.2):3873-3884 (in Chinese with English abstract).
|
Hao, M.H., Xu, Q., Yang, L., 2014. Physical Modeling and Movement Mechanism of Landslide-Debris Avalanches. Rock and Soil Mechanics, 35(Suppl.1):128-132 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx2014z1018
|
Hewitt, K., Clague, J.J., Orwin, J.F., 2008. Legacies of Catastrophic Rock Slope Failures in Mountain Landscapes. Earth-Science Reviews, 87(1-2):1-38. doi: 10.1016/j.earscirev.2007.10.002
|
Hsü, K. J., 1975. Catastrophic Debris Streams (Sturzstroms) Generated by Rockfalls. Geological Society of America Bulletin, 86(1): 129. https://doi.org/10.1130/0016-7606(1975)86 < 129:cdssgb > 2.0.co; 2 doi: 10.1130/0016-7606(1975)86<129:CDSSGB>2.0.CO;2
|
Huang, H., Dabiri, D., Gharib, M., 1997. On Errors of Digital Particle Image Velocimetry. Measurement Science and Technology, 8(12): 1427-1440. doi: 10.1088/0957-0233/8/12/007
|
Huang, R.Q., 2007. Large-Scale Landslide and Their Sliding Mechanisms in China since the 20th Century. Journal of Rock Mechanics and Engineering, 26(3):433-454 (in Chinese with English abstract).
|
Kent, P. E., 1966. The Transport Mechanism in Catastrophic Rock Falls. The Journal of Geology, 74(1): 79-83. https://doi.org/10.1086/627142 doi: 10.1086/627142
|
Luo, W.Q., Li, F.A., Liu, X. S., et al., 2016. Evolution Stage Division of Landslide Based on Analysis of Multivariate Time Series. Earth Science, 41(4): 711-717 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201604017
|
Manzella, I., Labiouse, V., 2007. Qualitative Analysis of Rock Avalanches Propagation by Means of Physical Modelling of Non-Constrained Gravel Flows. Rock Mechanics and Rock Engineering, 41(1): 133-151. https://doi.org/10.1007/s00603-007-0134-y doi: 10.1007/s00603-007-0134-y
|
Okura, Y., Kitahara, H., Sammori, T., 2000a. Fluidization in Dry Landslides. Engineering Geology, 56(3/4): 347-360. https://doi.org/10.1016/s0013-7952(99)00118-0 doi: 10.1016/s0013-7952(99)00118-0
|
Okura, Y., Kitahara, H., Sammori, T., et al., 2000b. The Effects of Rockfall Volume on Runout Distance. Engineering Geology, 58(2): 109-124. https://doi.org/10.1016/s0013-7952(00)00049-1 doi: 10.1016/S0013-7952(00)00049-1
|
Panciroli, R., Porfiri, M., 2013. Evaluation of the Pressure Field on a Rigid Body Entering a Quiescent Fluid through Particle Image Velocimetry. Experiments in Fluids, 54(12): 1630. https://doi.org/10.1007/s00348-013-1630-3
|
Piro, V., Piro, N., Piro, O., 2012. Characterization of Intraventricular Blood Flow Using a Microbubble-Contrast Tracking Echo-PIV Technique. Journal of the American College of Cardiology, 59(13): E1139. https://doi.org/10.1016/s0735-1097(12)61140-1 doi: 10.1016/S0735-1097(12)61140-1
|
Ryerson, W. G., Schwenk, K., 2011. A Simple, Inexpensive System for Digital Particle Image Velocimetry (DPIV) in Biomechanics. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 317(2): 127-140. https://doi.org/10.1002/jez.725 doi: 10.1002/jez.725
|
Sassa, K., 1989. Special Lecture: Geotechnical Model for the Motion of Landslides. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 26(2): 88. https://doi.org/10.1016/0148-9062(89)90311-2 doi: 10.1016/0148-9062(89)90311-2
|
Shi, Q., Ghosh, R. P., Engelke, H., et al., 2013. Rapid Disorganization of Mechanically Interacting Systems of Mammary Acini. Proceedings of the National Academy of Sciences, 111(2): 658-663. https://doi.org/10.1073/pnas.1311312110 doi: 10.1073/pnas.1311312110
|
Sosio, R., Crosta, G. B., Hungr, O., 2008. Complete Dynamic Modeling Calibration for the Thurwieser Rock Avalanche (Italian Central Alps). Engineering Geology, 100(1/2): 11-26. https://doi.org/10.1016/j.enggeo.2008.02.012 doi: 10.1016/j.enggeo.2008.02.012
|
Thielicke, W., Stamhuis, E. J., 2014. Pivlab-towards User-Friendly, Affordable and Accurate Digital Particle Image Velocimetry in Matlab. Journal of Open Research Software, 2(1):1-10. https://doi.org/10.5334/jors.bl
|
Xu, L.F., Chen, G., Li, J.Z., et al., 2003. Research Progress on Particle Image Velocimetry. Advances in Mechanics, 33(4): 533-540 (in Chinese with English abstract).
|
Yu, M.L., Mei, H.B., Li, J.H., et al., 2016. Landslide Displacement Predction Based on Varying Coefficient Regression Model in Three Gorges Reservior Area. Earth Science, 41(9): 1593-1602 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.118 doi: 10.3799/dqkx.2016.118
|
Zhang, M., Yin, Y.P., Wu, S.R., et al., 2010. Development Status and Prospects of Studies on Kinematics of Long Runout Rock Avalanches. Journal of Engineering Geology, 18(6):806-817 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201006001
|
Zou, Z.X., 2014. Research on the Evolution Dynamics of the Consequent Bedding Rockslides (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
|
陈卓根, 葛云峰, 2016.基于统计方法的高速远程滑坡距离预测分析.人民长江, 47(12): 42-47. http://d.old.wanfangdata.com.cn/Periodical/rmcj201612010
|
董周宾, 颜丹平, 张自力, 等, 2004.基于粒子图像测速系统(PIV)的砂箱模拟实验方法研究与实例分析.现代地质, 28(2): 321-330. http://d.old.wanfangdata.com.cn/Periodical/xddz201402010
|
葛云峰, 唐辉明, 李伟, 等, 2016.基于岩体结构特征的高速远程滑坡致灾范围评价.地球科学, 41(9):1583-1592. doi: 10.3799/dqkx.2016.117
|
葛云峰, 唐辉明, 熊承仁, 等, 2014.滑动面力学参数对滑坡稳定性影响研究——以重庆武隆鸡尾山滑坡为例.岩石力学与工程学报, 32(增刊2):3874-3875. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb2014z2061
|
郝明辉, 许强, 杨磊, 等, 2014.滑坡-碎屑流物理模型试验及运动机制探讨.岩土力学, 35(增刊1):127-132. http://d.old.wanfangdata.com.cn/Periodical/ytlx2014z1018
|
黄润秋, 2007. 20世纪以来中国的大型滑坡及其发生机制.岩石力学与工程学报, 26(3):433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001
|
罗文强, 李飞翱, 刘小珊, 等, 2016.多元时间序列分析的滑坡演化阶段划分.地球科学, 41(4): 711-717. doi: 10.1799/dqkx.2016.060
|
许联锋, 陈刚, 李建中, 等, 2003.粒子图像测速技术研究进展.力学进展, 33(4):533-540. doi: 10.3321/j.issn:1000-0992.2003.04.010
|
喻孟良, 梅红波, 李冀骅, 等, 2016.基于变系数回归模型的三峡库区滑坡位移预测.地球科学, 41(9): 1593-1602. doi: 10.3799/dqkx.2016.118
|
张明, 殷跃平, 吴树仁, 等, 2010.高速远程滑坡-碎屑流运动机理研究发展现状与展望.工程地质学报, 18(6):805-817. doi: 10.3969/j.issn.1004-9665.2010.06.001
|
邹宗兴, 2014.顺层岩质滑坡演化动力学研究(博士学位论文).武汉: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-10491-1014340826.htm
|