• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 2
    Feb.  2019
    Turn off MathJax
    Article Contents
    Wang Chao, Li Guangrong, Guo Fusheng, Guo Chao, Dai Jiaqi, 2019. Mineral Association and Iron Species in Wujialong Fault of Jiangshan, Zhejiang Province: Implications for Fault Activity. Earth Science, 44(2): 463-474. doi: 10.3799/dqkx.2017.620
    Citation: Wang Chao, Li Guangrong, Guo Fusheng, Guo Chao, Dai Jiaqi, 2019. Mineral Association and Iron Species in Wujialong Fault of Jiangshan, Zhejiang Province: Implications for Fault Activity. Earth Science, 44(2): 463-474. doi: 10.3799/dqkx.2017.620

    Mineral Association and Iron Species in Wujialong Fault of Jiangshan, Zhejiang Province: Implications for Fault Activity

    doi: 10.3799/dqkx.2017.620
    • Received Date: 2017-12-01
    • Publish Date: 2019-02-15
    • As a result of the excavation of building construction, 6 small size fresh faults exposed in Wujialong of Jiangshan City, Zhejiang Province, which was sub-branch of Jiangshao fault. Field geological survey, X-ray powder diffraction and Mössbauer spectroscopy were used to study the mineral composition and iron species of fault gouges and wall rocks of 3 small faults (F1, F2 and F3) in Wujialong fault. After comparative analysis and research we found that:(1) The wall rocks and fault gouges are mainly composed of quartz and clay minerals, and also contain a small amount of albite and calcite. The clay minerals are mainly composed of illite and IS layer, and also contain small amount of chlorite, kaolinite and KS layer and trace amount of montmorillonite and vermiculite. (2) Except the JS07 sample, the rock forming minerals content is higher than that of fault gouges whereas to the clay content in fault gouges is higher than that of wall rocks. (3) Clay mineral in F1 fault is dominated by illite, indicating a relative stable environment. The content of illite in F2 and F3 fault gouges are lower than that in wall rocks, montmorillonite and IS layer is higher than that in wall rocks, indicating that it was formed in wet, strong oxidizing environment. (4) The high content of reduced iron of wall rocks in F1 may suggest that the formation of wall rocks is involved in the process of reducing substances, the high levels of oxidized iron of F1, F3 fault zone and F3 hanger, indicating either F1, F3 faults are inactive and/or they are inner-block fault. (5) The types and association of clay minerals in the fault zone and the redox environment generally show that the Wujialong fault is in a relatively stable environment, however, the content of illite in the fault zone is high, which is conducive to the fault activity. The activity of Wujialong fault and the possibility of earthquake should be taken into consideration seriously.

       

    • loading
    • Canil, D., O'Neill, H.S.C., Pearson, D.G., et al., 1994.Ferric Iron in Peridotites and Mantle Oxidation States.Earth and Planetary Science Letters, 123(1-3):205-220. https://doi.org/10.1016/0012-821x(94)90268-2
      Chen, Y.K., Zhao, G.M., Yan, C.G., et al., 2013.Active Fault Detection and Seismic Hazard Assessment in Tianjin.Science Press, Beijing (in Chinese).
      Chen, Z.D., Wu, X.Y., 1996.The Caledonian Movement in Western Part of Zhejiang.Geology of Zhejiang, 12(2):28-34(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000005899
      Dang, J.X., Zhou, Y.S., Han, L., et al., 2012.X-Ray Diffraction Analysis Result of Co-Seismic Fault Gouge in Carbon Mudstone at Outcrops of Bajiaomian and Shenxigou in Hongkou.Seismology and Geology, 34(1):17-27(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZDZ201201005.htm
      Dyar, M., 1993.Crystal Chemistry of Fe3+ and H+ in Mantle Kaersutite:Implications for Mantle Metasomatism.American Mineralogist, 78(9-10):968-979. https://doi.org/10.1016/0024-4937(93)90032-8
      Eyles, N., Boyce, J.I., 1998.Kinematic Indicators in Fault Gouge:Tectonic Analog for Soft-Bedded Ice Sheets.Sedimentary Geology, 116(1-2):1-12. https://doi.org/10.1016/s0037-0738(97)00122-x
      Fu, B.H., Wang, P., Kong, P., et al., 2008.Preliminary Study of Coseismic Fault Gouge Occurred in The Slip Zone of the Wenchuan Ms8.0 Earthquake and Its Tectonic Implications.Acta Petrologica Sinica, 24(10):2237-2243(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200810005.htm
      Guo, F.S., 2004.Sedimentary Evolution and Tectonic Control of Paleozoic in Jiangshan, Zhejiang(Dissertation).China University of Geosciences, Beijing(in Chinese with English abstract).
      Guo, F.S., 2014.Outline of Jiangshan Geology and Practice Guide for Regional Geological Survey.Geological Publishing House, Beijing (in Chinese).
      Hashimoto, Y., Ujiie, K., Sakaguchi, A., et al., 2007.Characteristics and Implication of Clay Minerals in the Northern and Southern Parts of the Chelung-Pu Fault, Taiwan.Tectonophysics, 443(3-4):233-242. https://doi.org/10.1016/j.tecto.2007.01.024
      Hataya, R., Tanaka, K., Miki, T., 1997.A New ESR Signal (R Signal) in Quartz Grains Taken from Fault Gauges:Its Properties and Significance for ESR Fault Dating.Applied Radiation and Isotopes, 48(3):423-429. https://doi.org/10.1016/s0969-8043(96)00230-8
      Hoffman, J., Hower, J., 1979.Clay Mineral Assemblages as Low Grade Metamorphic Geothermometers:Application to the Thrust Faulted Disturbed Belt of Montana.Aspects of Diagenesis, 55-79. https://doi.org/10.2110/pec.79.26.0055
      Hong, H.L., Fang, Q., Wang, C.W., et al., 2017.Constraints of Parent Magma on Altered Clay Minerals:A Case Study on the Permin-Triassic Boundary in Xinmin Section, Guizhou Province.Earth Science, 42(2):161-172(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201702001.htm
      Huang, S.J., 1990.Identification and Diagenetic Significance of Interstratified Illite-Montmorillonite Series.Sedimentary Facies and Palaeogeography, (5):23-29(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD199005003.htm
      Jin, W.S., Zhao, F.Q., Zhang, H.M., 1998.Division of Tectonic Units and Its Characteristics.Geology of Zhejiang, 14(1):1-10(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZJDZ199801000.htm
      Li, Z., Ying, Y.P., 1996.Mineral Mössbauer Spectroscopy.Science Press, Beijing (in Chinese).
      Liang, D.X., Chen, L.E., 1990.Phanerozoice on Sedimentologic and Tectonic Evolution in the West Zhejiang and Anhui Region.Journal of East China College of Geology, (4):84-92(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HDDZ199004014.htm
      Lin, C.Y., Shi, L.F., Liu, X.S., et al., 1995.Significance of Fault Gouge in the Study of Recent Activity of Fault in Bedrock Area.Earthquake Research in China, 11(1):26-32(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500633724
      Luo, D.G., Liu, J.P., Jin, C., 2017.Instantaneous Seismic Attributes and Response Characteristics of Active Faults.Earth Science, 42(3):462-470(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201703013
      Ma, R.Z., Xu, Y.T., 1996.Mössbauer Spectroscopy.Science Press, Beijing (in Chinese).
      Ma, X.X., Wang, H.L., Zhang, Z.W., et al., 2014.Distribution Charcateristics of Iron Species in Three Faults Along the Eastern Margin of the Tibetan Plateau, China.Bulletin of Mineralogy, Petrology and Geochemistry, 33(3):348-354(in Chinese with English abstract).
      Pollastro, R.M., 1993.Considerations and Applications of the Illite/Smectite Geothermometer in Hydrocarbon-Bearing Rocks of Miocene to Mississippian Age.Clays and Clay Minerals, 41(2):119-133. https://doi.org/10.1346/ccmn.1993.0410202
      Shao, S.M., 1994.Present Condition and Progress of Fault Gouge Research.Earthquake Research in Plateau, 6(3):51-56(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400138610
      Tanaka, H., Fujimoto, K., Ohtani, T., et al., 2001.Structural and Chemical Characterization of Shear Zones in the Freshly Activated Nojima Fault, Awaji Island, Southwest Japan.Journal of Geophysical Research:Solid Earth, 106(B5):8789-8810. https://doi.org/10.1029/2000jb900444
      Tang, Y.J., Jia, J.Y., Xie, X.D., 2002.Environment Significance of Clay Minerals.Earth Science Frontiers, 9(2):337-344(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgsm201801012
      Vrolijk, P., Van, d.P.B.A., 1999.Clay Gouge.Journal of Structural Geology, 21(8):1039-1048. https://doi.org/10.1016/S0191-8141(99)00103-0
      Wang, J., 2000.Neoproterozoic Rifting History of South China:Significance to Rodinia Breakup.Geological Publishing House, Beijing (in Chinese).
      Wang, Z.W., Pang, B.Z., 2008.Geophysical Logging and Global Climate Change Research.Journal of Jilin University(Earth Science Edition), (Suppl.1):103-105(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200802343602
      Wu, F.T., Blatter, L., Roberson, H., 1975.Clay Gouges in the San Andreas Fault System and Their Possible Implications.Pure and Applied Geophysics, 113(1):87-95. https://doi.org/10.1007/bf01592901
      Zeelmaekers, E., Honty, M., Derkowski, A., et al., 2015.Qualitative and Quantitative Mineralogical Composition of the Rupelian Boom Clay in Belgium.Clay Minerals, 50(2):249-272. https://doi.org/10.1180/claymin.2015.050.2.08
      Zhang, B.L., Feng, J.J., Niu, L.F.et al., 1989.Characteristics of Clay Minerals in Fault Gouges from Honghe Fault Zone and Their Seismogeologic Implication.Seismology and Geology, 11(3):96-97(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ198903014.htm
      Zhang, F.L., Yi, F., Chen, Y.L., et al., 1997.Determination of the Optimum Thickness of an Absorber in Mössbauer Spectroscopy.Journal of Wuhan University(Natural Science Edition), 43(3):348-352(in Chinese with English abstract).
      Zhang, Y.S., Gao, D.L., Liu, Y., et al., 2014.Characteristics and Environmental Significance of Clay Minerals in the Late Pieistocene Lake Sediment, Qaidam Basin.Bulletin of Mineralogy, Petrology and Geochemistry, 33(1):49-54(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/pre_2c7b8fa6-2e32-40fa-ae8f-28f58353bf71
      Zhao, J., Zheng, G.D., Fu, B.H., 2009.Current Development of Tectonic Geochemical Studies of Active Fault Zones.Advances in Earth Science, 24(10):1130-1137(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkxjz200910007
      Zheng, G.D., 2008.Iron Speciation by Mössbauer Spectroscopy and Its Implications in Various Studies on the Earth Surface Processes.Bulletin of Mineralogy, Petrology and Geochemistry, 27(2):161-168(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200802011.htm
      Zheng, G.D., Fu, B.H., Takahashi, Y., et al., 2008.Iron Speciation in Fault Gouge from the Ushikubi Fault Zone Central Japan.Hyperfine Interactions, 186(1-3):39-52. https://doi.org/10.1007/s10751-008-9846-y
      Zheng, G.D., Xu, S., Lang, Y.H., et al., 2002.Chemical Variation of Iron Elements in Clay of Landslide.Chinese Science Bulletin, 47(24):1889-1893(in Chinese). doi: 10.1360/02tb9438
      Zhu, D.G., Meng, X.G., Zhao, X.T., et al., 2004.Lake-Level Change of Namco, Tibet, since the Late Pleistocene and Environment Information of Clay Minerals in Lacustrine Deposits.Journal of Geomechanics, 10(4):300-309(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX200404002.htm
      Zhu, G.Q., Jiang, J.S., Chen, Z.J., et al., 1997, Tectonic Evolution and Deformational Features of Jiangshan-Shaoxing Fracture Zone in Northweastern Zhejiang.Zhejiang Land & Resources, 13(2):6-10(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700721240
      陈宇坤, 赵国敏, 闫成国, 等, 2013.天津市活动断层探测与地震危险性评价.北京:科学出版社.
      陈忠大, 吴小勇, 1996.浙西的加里东运动.浙江地质, 12(2):28-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600691748
      党嘉祥, 周永胜, 韩亮, 等, 2012.虹口八角庙-深溪沟炭质泥岩同震断层泥的X射线衍射分析结果.地震地质, 34(1):17-27. doi: 10.3969/j.issn.0253-4967.2012.01.003
      付碧宏, 王萍, 孔屏, 等, 2008.四川汶川5.12大地震同震滑动断层泥的发现及构造意义.岩石学报, 24(10):2237-2243. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200810005
      郭福生, 2004.浙江江山古生代沉积演化及其构造控制(博士学位论文).北京: 中国地质大学.
      郭福生, 2014.江山地质概论及区域地质调查实习指导书.北京:地质出版社.
      洪汉烈, 方谦, 王朝文, 等, 2017.岩浆母质对蚀变粘土矿物的约束:以贵州新民剖面P-T界线附近火山灰层为例.地球科学, 42(2):161-172. doi: 10.3969/j.issn.1672-6561.2017.02.003
      黄思静, 1990.混层伊利石-蒙脱石的鉴定及其成岩意义.岩相古地理, (5):23-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003145126
      金文山, 赵凤清, 张惠民, 1998.华机构造单元划分及其特征.浙江地质, 14(1):1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800765673
      李哲, 应育浦, 1996.矿物穆斯堡尔谱学.北京:科学出版社.
      梁鼎新, 陈联儿, 1990.浙西和皖南地区显生宙沉积大地构造演化.东华理工大学学报(自然科学版), 13(4):84-92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005507633
      林传勇, 史兰斌, 刘行松, 等, 1995.断层泥在基岩区断层新活动研究中的意义.中国地震, 11(1):26-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500633724
      罗登贵, 刘江平, 金聪, 等, 2017.活断层的地震响应特征与瞬时地震属性.地球科学, 42(3):462-470. http://www.earth-science.net/WebPage/Article.aspx?id=3535
      马如璋, 徐英庭, 1996.穆斯堡尔谱学.北京:科学出版社.
      马向贤, 王华林, 张志武, 等, 2014.青藏高原东缘3条断裂带断层泥铁元素化学种的分布特征.矿物岩石地球化学通报, 33(3):348-354. doi: 10.3969/j.issn.1007-2802.2014.03.009
      邵顺妹, 1994.断层泥研究的现状和进展.高原地震, 6(3):51-56. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400138610
      汤艳杰, 贾建业, 谢先德, 2002.粘土矿物的环境意义.地学前缘, 9(2):337-344. doi: 10.3321/j.issn:1005-2321.2002.02.011
      王剑, 2000.华南新元古代裂谷盆地演化——兼论与Rodinia解体的关系.北京:地质出版社.
      王志文, 潘保芝, 2008.地球物理测井在古气候研究中的现状和展望.吉林大学学报(地球科学版), 38(增刊1):103-105. http://d.old.wanfangdata.com.cn/Conference/6874698
      张秉良, 冯锦江, 牛娈芳, 等, 1989.红河断裂带断层泥中粘土矿物特征及其地震地质意义.地震地质, 11(3):96-97. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000348874
      张富良, 易凡, 陈义龙, 等, 1997.穆斯堡尔谱学中样品最佳厚度的确定.武汉大学学报(理学版), 43(3):348-352. doi: 10.3321/j.issn:1671-8836.1997.03.001
      张玉淑, 高东林, 刘永, 等, 2014.柴达木盆地晚更新世湖泊沉积物中黏土矿物特征及环境意义.矿物岩石地球化学通报, 33(1):49-54. doi: 10.3969/j.issn.1007-2802.2014.01.006
      赵军, 郑国东, 付碧宏, 2009.活动断层的构造地球化学研究现状.地球科学进展, 24(10):1130-1137. doi: 10.3321/j.issn:1001-8166.2009.10.007
      郑国东, 2008.基于穆斯堡尔谱技术的铁化学种及其在相关表生地球科学研究中的应用.矿物岩石地球化学通报, 27(2):161-168. doi: 10.3969/j.issn.1007-2802.2008.02.009
      郑国东, 徐胜, 郎煜华, 等, 2002.滑坡面黏土中铁元素的化学种变化.科学通报, 47(24):1889-1893. doi: 10.3321/j.issn:0023-074X.2002.24.011
      朱大岗, 孟宪刚, 赵希涛, 等, 2004.西藏纳木错晚更新世以来湖面变化和湖相沉积中粘土矿物显示的环境信息.地质力学学报, 10(4):300-309. doi: 10.3969/j.issn.1006-6616.2004.04.002
      竺国强, 姜继双, 陈梓军, 等, 1997.浙西北江山-绍兴断裂带构造演化特征.浙江地质, 13(2):6-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700721240
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(4)

      Article views (4641) PDF downloads(31) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return