• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 43 Issue 1
    Jan.  2018
    Turn off MathJax
    Article Contents
    Ding Zigeng, Tong Laixi, Liu Xiaohan, Liu Zhao, Zhou Xuejun, 2018. Metamorphic P-T Path of High-Pressure Mafic Granulite (Retrograded Eclogite) from Dinggye of Tibet and Its Tectonic Implication. Earth Science, 43(1): 220-235. doi: 10.3799/dqkx.2018.013
    Citation: Ding Zigeng, Tong Laixi, Liu Xiaohan, Liu Zhao, Zhou Xuejun, 2018. Metamorphic P-T Path of High-Pressure Mafic Granulite (Retrograded Eclogite) from Dinggye of Tibet and Its Tectonic Implication. Earth Science, 43(1): 220-235. doi: 10.3799/dqkx.2018.013

    Metamorphic P-T Path of High-Pressure Mafic Granulite (Retrograded Eclogite) from Dinggye of Tibet and Its Tectonic Implication

    doi: 10.3799/dqkx.2018.013
    • Received Date: 2017-08-01
    • Publish Date: 2018-01-15
    • Dinggye is located in the central part of the Greater Himalayan crystalline complex (GHC) in southern Tibet. It is essential to investigate the metamorphic P-T path of granulite in this area to better understand the collision and uplifting process of the Tibetan plateau. The petrological study of the high-pressure mafic granulite (retrograded eclogite) from the region indicates four stages:(1) peak eclogite facies mineral assemblage (M1) consists of garnet (core)+omphacite (psedomorph)+quartz+rutile; (2) high-pressure granulite facies mineral assemblage (M2) comprises garnet (mantle)+clinopyroxene+plagioclase+ilmenite+amphibole+biotite; (3) medium-pressure granulite facies assemblage (M3) is composed of garnet (rim)+orthopyroxene+plagioclase+biotite; (4) amphibolite facies mineral assemblage (M4) consists of amphibole+plagioclase. Using the THERMOCALC program, the thermodynamic modeling in the NCFMASHTO system has been undertaken for the high-pressure mafic granulite. Combined with the conventional thermobarometers and the average P-T estimates, the P-T conditions of the different metamorphic stages are estimated to be 786-826℃, 0.78-0.96 GPa (M2); 798-850℃, 0.71-0.75 GPa (M3); and 610-666℃, 0.51-0.60 GPa (M4), respectively, indicating a post-peak clockwise P-T path characterized by nearly isothermal decompression. Combined with geological data available, we propose that the high-pressure mafic granulite (retrograded eclogite) of the Dinggye formed during the Himalayan collisional orogeny, and underwent a post-peak tectonic uplift process of nearly isothermal decompression.

       

    • loading
    • Anderson, J.L., Smith, D.R., 1995.The Effects of Temperature and F(O2) on the Al-in-Hornblende Barometer.American Mineralogist, 80(5-6):549-559. https://doi.org/10.2138/am-1995-5-615
      Bézos, A., Humler, E., 2005.The Fe3+/∑Fe Ratios of MORB Glasses and Their Implications for Mantle Melting.Geochimica et Cosmochimica Acta, 69(3):711-725. https://doi.org/10.1016/j.gca.2004.07.026
      Bhadra, S., Bhattacharya, A., 2007.The Barometer Tremolite+Tschermakite+2 Albite=2 Pargasite+8 Quartz:Constraints from Experimental Data at Unit Silica Activity, with Application to Garnet-Free Natural Assemblages.American Mineralogist, 92(4):491-502. https://doi.org/10.2138/am.2007.2067
      Bohlen, S.R., 1987.Pressure-Temperature-Time Paths and a Tectonic Model for the Evolution of Granulites.The Journal of Geology, 95(5):617-632. doi: 10.1086/629159
      Chakungal, J., Dostal, J., Grujic, D., et al., 2010.Provenance of the Greater Himalayan Sequence:Evidence from Mafic Granulites and Amphibolites in NW Bhutan.Tectonophysics, 480(1-4):198-212. https://doi.org/10.1016/j.tecto.2009.10.014
      Chen, X.Y., Tong, L.X., Zhang, C.L., et al., 2015.Retrograde Garnet Amphibolite from Eclogite of the Zhejiang Longyou Area:New Evidence of the Caledonian Orogenic Event in the Cathaysia Block.Chinese Science Bulletin, 60(13):1207-1217 (in Chinese with English abstract). doi: 10.1360/N972015-00094
      Coleman, R.G., Lee, D.E., Beatty, L.B., et al., 1965.Eclogites and Eclogites:Their Differences and Similarities.Geological Society of America Bulletin, 76(5):483-508. https://doi.org/10.1130/0016-7606(1965)76[483:EAETDA]2.0.CO;2
      Corrie, S.L., Kohn, M.J., Vervoort, J.D., 2010.Young Eclogite from the Greater Himalayan Sequence, Arun Valley, Eastern Nepal:P-T-t Path and Tectonic Implications.Earth & Planetary Science Letters, 289(3-4):406-416. https://doi.org/10.1016/j.epsl.2009.11.029
      Cottrell, E., Kelley, K.A., 2011.The Oxidation State of Fe in MORB Glasses and the Oxygen Fugacity of the Upper Mantle.Earth and Planetary Science Letters, 305(3-4):270-282. https://doi.org/10.1016/j.epsl.2011.03.014
      Daczko, N.R., Halpin, J.A., 2009.Evidence for Melt Migration Enhancing Recrystallization of Metastable Assemblages in Mafic Lower Crust, Fiordland, New Zealand.Journal of Metamorphic Geology, 27(2):167-185. https://doi.org/10.1111/j.1525-1314.2009.00811.x
      Diener, J.F.A., Powell, R., White, R.W., et al., 2007.A New Thermodynamic Model for Clino-and Orthoamphiboles in the System Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O.Journal of Metamorphic Geology, 25(6):631-656. https://doi.org/10.1111/j.1525-1314.2007.00720.x
      Ding, L., Zhong, D.L., 1999.Metamorphic Characteristic and Geotectonic Implication of the High-Pressure Granulites from Namjagbarwa, Eastern Tibet.Science in China (Series D), 29(5):385-397 (in Chinese).
      Eckert, J.O., Newton, R., Kleppa, O., 1991.The H of Reaction and Recalibration of Garnet-Pyroxene-Plagioclase-Quartz Geobarometers in the CMAS System by Solution Calorimetry.American Mineralogist, 76(1-2):148-160. https://pubs.geoscienceworld.org/ammin/article-lookup/76/1-2/148
      England, P.C., Thompson, A.B., 1984.Pressure-Temperature-Time Paths of Regional Metamorphism I.Heat Transfer during the Evolution of Regions of Thickened Continental Crust.Journal of Petrology, 25(4):894-928. https://doi.org/10.1093/petrology/25.4.894
      Green, E., Holland, T., Powell, R., 2007.An Order-Disorder Model for Omphacitic Pyroxenes in the System Jadeite-Diopside-Hedenbergite-Acmite, with Applications to Eclogitic Rocks.American Mineralogist, 92(7):1181-1189. https://doi.org/10.2138/am.2007.2401
      Groppo, C., Lombardo, B., Rolfo, F., et al., 2007.Clockwise Exhumation Path of Granulitized Eclogites from the Ama Drime Range (Eastern Himalayas).Journal of Metamorphic Geology, 25(1):51-75. https://doi.org/10.1111/j.1525-1314.2006.00678.x
      Grujic, D., Warren, C.J., Wooden, J.L., 2011.Rapid Synconvergent Exhumation of Miocene-Aged Lower Orogenic Crust in the Eastern Himalaya.Lithosphere, 3(5):346-366. https://doi.org/10.1130/L154.1
      Guilmette, C., Indares, A., Hébert, R., 2011.High-Pressure Anatectic Paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis:Textural Evidence for Partial Melting, Phase Equilibria Modeling and Tectonic Implications.Lithos, 124(1-2):66-81. https://doi.org/10.1016/j.lithos.2010.09.003
      Harley, S.L., 1989.The Origins of Granulites:A Metamorphic Perspective.Geological Magazine, 126(3):215-247. https://doi.org/10.1017/s0016756800022330
      Hodges, K.V., 2000.Tectonics of the Himalaya and Southern Tibet from Two Perspectives.Geological Society of America Bulletin, 112(3):324-350.https://doi.org/10.1130/0016-7606(2000)112<0324:TOTHAS>2.3.CO;2 doi: 10.1130/0016-7606(2000)112<0324:TOTHAS>2.3.CO;2
      Holland, T., Blundy, J., 1994.Non-Ideal Interactions in Calcic Amphiboles and Their Bearing on Amphibole-Plagioclase Thermometry.Contributions to Mineralogy and Petrology, 116(4):433-447. https://doi.org/10.1007/BF00310910
      Holland, T., Powell, R., 2003.Activity-Composition Relations for Phases in Petrological Calculations:An Asymmetric Multicomponent Formulation.Contributions to Mineralogy and Petrology, 145(4):492-501. https://doi.org/10.1007/s00410-003-0464-z
      Holland, T.J.B., Powell, R., 1998.An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest.Journal of Metamorphic Geology, 16(3):309-343. https://doi.org/10.1111/j.1525-1314.1998.00140.x
      Jessup, M.J., Cottle, J.M., 2010.Progression from South-Directed Extrusion to Orogen-Parallel Extension in the Southern Margin of the Tibetan Plateau, Mount Everest Region, Tibet.The Journal of Geology, 118(5):467-486. https://doi.org/10.1086/655011
      Jessup, M.J., Newell, D.L., Cottle, J.M., et al., 2008.Orogen-Parallel Extension and Exhumation Enhanced by Denudation in the Trans-Himalayan Arun River Gorge, Ama Drime Massif, Tibet-Nepal.Geology, 36(7):587-590. https://doi.org/10.1130/G24722A.1
      Ji, J.Q., Zhong, D.L., Song, B., et al., 2004.Metamorphism, Geochemistry and U-Pb Zircon SHRIMP Geochronology of the High-Pressure Granulites in the Central Greater Himalayas.Acta Petrologica Sinica, 20(5):1283-1300 (in Chinese with English abstract).
      Kali, E., Leloup, P.H., Arnaud, N., et al., 2010.Exhumation History of the Deepest Central Himalayan Rocks, Ama Drime Range:Key Pressure-Temperature-Deformation-Time Constraints on Orogenic Models.Tectonics, 29(2):TC2014. https://doi.org/10.1029/2009TC002551
      Kellet, D.A., Cottle, J.M., Smit, M., 2014.Eocene Deep Crust at Ama Drime, Tibet:Early Evolution of the Himalayan Orogen.Lithosphere, 6(4):220-229. https://doi.org/10.1130/L350.1
      Kohn, M.J., 2014.Himalayan Metamorphism and Its Tectonic Implications.Annual Review of Earth and Planetary Sciences, 42(1):381-419. https://doi.org/10.1146/annurev-earth-060313-055005
      Lal, R.K., 1993.Internally Consistent Recalibrations of Mineral Equilibria for Geothermobarometry Involving Gar-net-Orthopyroxene-Plagioclase-Quartz Assemblages and Their Application to the South Indian Granulites.Journal of Metamorphic Geology, 11(6):855-866. https://doi.org/10.1111/j.1525-1314.1993.tb00195.x
      Langille, J.M., Jessup, M.J., Cottle, J.M., et al., 2010.Kinematic Evolution of the Ama Drime Detachment:Insights into Orogen-Parallel Extension and Exhumation of the Ama Drime Massif, Tibet-Nepal.Journal of Structural Geology, 32(7):900-919. https://doi.org/10.1016/j.jsg.2010.04.005
      Le Fort, P., 1975.Himalayas:The Collided Range.Present Knowledge of the Continental Arc.American Journal of Science, 275:1-44. http://www.oalib.com/references/7070282
      Leake, B.E., Woolley, A.R., Brich, W.D., et al., 2004.Nomenclature of Amphiboles:Additions and Revisions to the International Mineralogical Association's Amphibole Nomenclature.Mineralogical Magazine, 68(1):209-215. https://doi.org/10.1180/0026461046810182
      Leloup, P.H., Mahéo, G., Arnaud, N., et al., 2010.The South Tibet Detachment Shear Zone in the Dinggye Area:Time Constraints on Extrusion Models of the Himalayas.Earth and Planetary Science Letters, 292(1-2):1-16. https://doi.org/10.1016/j.epsl.2009.12.035
      Li, D.W., Liao, Q.A., Yuan, Y.M., et al., 2002.Discovery and Significance of Basic Granulites in the Complexes in the Middle Himalaya.Earth Science, 27(1):80, 96 (in Chinese). doi: 10.1007/s11430-011-4250-x
      Li, D.W., Liao, Q.A., Yuan, Y.M., et al., 2003.U-Pb Zircon Ages of Rimana Granulites in the Middle Himalaya.Chinese Science Bulletin, 48(20):2176-2179 (in Chinese). doi: 10.1007/BF03182846
      Liao, Q.A., Li, D.W., Yi, S.H., et al., 2003.Petrologic and Geologic Significance of Garnet Pyroxenite and Mafic Granulites from High Himalayan Region, Tibet.Earth Science, 28(6):627-633 (in Chinese with English abstract).
      Liu, D.M., Li, D.W., Yang, W.R., 2003.Study of Mylonite and Deformation of Ductile Shear Zone, Dingjie Area.Earth Science Frontiers, 10(2):479-486 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/0191814180900486
      Liu, Q., Deng, Y.B., Xiang, S.Y., et al., 2017.Early Ordovician Tectono-Thermal Event in Zhongba Terrane and Its Geological Significance.Earth Science, 42(6):881-890 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.076
      Liu, S.W., Zhang, J.J., Shu, G.M., et al., 2005.Mineral Chemistry, P-T-t Paths and Exhumation Processes of Mafic Granulites in Dinggye, Southern Tibet.Science in China (Series D), 35(9):810-820 (in Chinese).
      Liu, X.H., Ju, Y.T., Wei, L.J., et al., 2009.An Alternative Tectonic Model for the Yarlung Zangbo Suture Zone.Science in China (Series D), 39(4):448-463 (in Chinese). doi: 10.1007/s11430-009-0177-x
      Liu, Y., Zhong, D.L., 1998.Petrology of High-Pressure Granulites from Eastern Himalaya:Implications to Tectonic Significance.Scientia Geologica Sinica, 33(3):267-281 (in Chinese with English abstract). https://www.researchgate.net/publication/230028123_Petrology_of_high-pressure_granulites_from_the_eastern_Himalayan_syntaxis
      Lombardo, B., Rolfo, F., 2000.Two Contrasting Eclogite Types in the Himalayas:Implications for the Himalayan Orogeny.Journal of Geodynamics, 30(1-2):37-60. https://doi.org/10.1016/S0264-3707(99)00026-5
      Lombardo, B., Rolfo.F., Compagnoni, R., 2000.Glaucophane and Barroisite Eclogites from the Upper KaghanNappe:Implications for the Metamorphic History of the NW Himalaya.Geological Society, London, Special Publications, 170(1):411-430. https://doi.org/10.1144/GSL.SP.2000.170.01.22
      Mottram, C.M., Parrish, R.R., Regis, D., et al., 2015.Using U-Th-Pb Petrochronology to Determine Rates of Ductile Thrusting:Time Windows into the Main Central Thrust, Sikkim Himalaya.Tectonics, 34(7):1355-1374. https://doi.org/10.1002/2014TC003743
      Mukherjee, B., Sachan, H.K., Ahmad, T., 2005.A New Occurrence of Microdiamond from Indus Suture Zone, Himalata:A Possible Origin.In:Memoire, H.S., ed., Special Extended Abstract Volume.Géologie Alpine, 44:136. https://www.researchgate.net/publication/278300924_New_occurrence_of_microdiamond_from_indus_suture_Zone_Himalaya_possible_origin_Geologie_alpine_abs_2005_No_44p_35
      Möller, C., 1998.Decompressed Eclogites in the Sveconorwegian (-Grenvillian) Orogen of SW Sweden:Petrology and Tectonic Implications.Journal of Metamorphic Geology, 16(5):641-656. https://doi.org/10.1111/j.1525-1314.1998.00160.x
      O'Brien, P.J., Zotov, N., Law, R., et al., 2001.Coesite in Himalayan Eclogite and Implications for Models of India-Asia Collision.Geology, 29(5):435-438.https://doi.org/10.1130/0091-7613(2001)029<0435:CIHEAI>2.0.CO;2 doi: 10.1130/0091-7613(2001)029<0435:CIHEAI>2.0.CO;2
      Pan, Y., Kidd, W.S.F., 1992.Nyainqentanglha Shear Zone:A Late Miocene Extensional Detachment in the Southern Tibetan Plateau.Geology, 20(9):775-778.https://doi.org/10.1130/0091-7613(1992)020<0775:NSZALM>2.3.CO;2 doi: 10.1130/0091-7613(1992)020<0775:NSZALM>2.3.CO;2
      Pitra, P., Ballèvre, M., Ruffet, G., 2010.Inverted Metamorphic Field Gradient towards a Variscan Suture Zone (Champtoceaux Complex, Armorican Massif, France).Journal of Metamorphic Geology, 28(2):183-208. https://doi.org/10.1111/j.1525-1314.2009.00862.x
      Powell, R., Holland, T., Worley, B., 1998.Calculating Phase Diagrams Involving Solid Solutions via Non-Linear Equations, with Examples Using THERMOCALC.Journal of Metamorphic Geology, 16(4):577-588. https://doi.org/10.1111/j.1525-1314.1998.00157.x
      Ravna, K., 2000.The Garnet-Clinopyroxene Fe2+-Mg Geothermometer:An Updated Calibration.Journal of Metamorphic Geology, 18(2):211-219. https://doi.org/10.1046/j.1525-1314.2000.00247.x
      Rolfo, F., McClelland, W., Lombardo, B., 2005.Geochronological Constraints on the Age of the Eclogite-Facies Metamorphism in the Eastern Himalaya.In:Memoire, H.S., ed., Special Extended Abstract Volume.Géologie Alpine, 44:170.
      Wang, Y.H., Zhang, L.F., Zhang, J.J., et al., 2017.The Youngest Eclogite in Central Himalaya:P-T Path, U-Pb Zircon Age and Its Tectonic Implication.Gondwana Research, 41:188-206. https://doi.org/10.1016/j.gr.2015.10.013
      Wei, C.J., 2011.Approaches and Advancement of the Study of Metamorphic P-T-t Paths.Earth Science Frontiers, 18(2):1-16 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0037073804002362
      White, R.W., Powell, R., Clarke, G.L., 2002.The Interpretation of Reaction Textures in Fe-Rich Metapelitic Granulites of the Musgrave Block, Central Australia:Constraints from Mineral Equilibria Calculations in the System K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3.Journal of Metamorphic Geology, 20(1):41-55. https://doi.org/10.1046/j.0263-4929.2001.00349.x
      White, R.W., Powell, R., Holland, T.J.B., 2007.Progress Relating to Calculation of Partial Melting Equilibria for Metapelites.Journal of Metamorphic Geology, 25(5):511-527. https://doi.org/10.1111/j.1525-1314.2007.00711.x
      White, R.W., Powell, R., Holland, T.J.B., et al., 2000.The Effect of TiO2 and Fe2O3 on Metapelitic Assemblages at Greenschist and Amphibolite Facies Conditions:Mineral Equilibria Calculations in the System K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3.Journal of Metamorphic Geology, 18(5):497-511. doi: 10.1046/j.1525-1314.2000.00269.x
      Xiao, W.J., Ao, S.J., Yang, L., et al., 2017.Anatomy of Composition and Nature of Plate Convergence:Insights for Alternative Thoughts for Terminal India-Eurasia Collision.Science in China (Series D), 47(6):631-656 (in Chinese). doi: 10.1007/s11430-016-9043-3
      Xu, Z.Q., Wang, Q., Pêcher, A., et al., 2013.Orogen-Parallel Ductile Extension and Extrusion of the Greater Himalaya in the Late Oligocene and Miocene.Tectonics, 32(2):191-215. https://doi.org/10.1002/tect.20021
      Yin, A., 2006.Cenozoic Tectonic Evolution of the Himalayan Orogen as Constrained by along-Strike Variation of Structural Geometry, Exhumation History, and Foreland Sedimentation.Earth-Science Reviews, 76(1):1-131. https://doi.org/10.1016/j.earscirev.2006.08.005
      Yu, J.J., Zeng, L.S., Liu, J., et al., 2011.Early Miocene Leucogranites in Dinggye Area, Southern Tibet:Formation Mechanism and Tectonic Implications.Acta Petrologica Sinica, 27(7):1961-1972 (in Chinese with English abstract). http://www.irgrid.ac.cn/password-login;jsessionid=E73DBB84A6B710BEEF8327921CA5133E
      Zhang, J.J., Guo, L., Ding, L., 2002.Structural Characteristics of Middle and Southern Xainza-Dinggye Normal Fault System and Its Relationship to Southern Tibetan Detachment System.Chinese Science Bulletin, 47(10):738-743 (in Chinese).
      Zhang, Z.M., Dong, X., He, Z.Y., et al., 2013.Indian and Asian Continental Collision Viewed from HP and UHP Metamorphism of the Himalaya Orogen.Acta Petrologica Sinica, 29(5):1713-1726 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20130518
      Zhang, Z.M., Zhao, G., Santosh, M., et al., 2010.Two Stages of Granulite Facies Metamorphism in the Eastern Himalayan Syntaxis, South Tibet:Petrology, Zircon Geochronology and Implications for the Subduction of Neo-Tethys and the Indian Continent beneath Asia.Journal of Metamorphic Geology, 28(7):719-733. https://doi.org/10.1111/j.1525-1314.2010.00885.x
      Zhang, Z.M., Zheng, L.L., Wang, J.L., et al., 2007.Garnet Pyroxenite in the Namjagbarwa Group-Complex in the Eastern Himalayan Tectonic Syntaxis, Tibet, China:Evidence for Subduction of the Indian Continent beneath the Eurasian Plate at 80-100km Depth.Geological Bulletin of China, 26(1):1-12 (in Chinese with English abstract).
      Zhao, G., Cawood, P.A., Wilde, S.A., et al., 2001.High-Pressure Granulites (Retrograded Eclogites) from the Hengshan Complex, North China Craton:Petrology and Tectonic Implications.Journal of Petrology, 42(6):1141-1170. https://doi.org/10.1093/petrology/42.6.1141
      Zhou, X., Tong, L.X., Liu, X.H., et al., 2014.Metamorphism Evolution of Mafic Granulite from the Larsemann Hills, East Antarctica.Acta Petrologica Sinica, 30(6):1731-1747 (in Chinese with English abstract). https://www.researchgate.net/publication/266383599_Metamorphism_evolution_of_mafic_granulite_from_the_Larsemann_Hills_East_Antarctica
      陈相艳, 仝来喜, 张传林, 等, 2015.浙江龙游石榴石角闪岩(退变榴辉岩):华夏加里东期碰撞造山事件的新证据.科学通报, 60(13):1207-1217. http://www.oalib.com/paper/4267633
      丁林, 钟大赉, 1999.西藏南迦巴瓦峰地区高压麻粒岩相变质作用特征及其构造地质意义.中国科学(D辑), 29(5):385-397. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd199905001
      李德威, 廖群安, 袁晏明, 等, 2002.喜马拉雅造山带中段核部杂岩中基性麻粒岩的发现及构造意义.地球科学, 27(1):80, 96. http://earth-science.net/WebPage/Article.aspx?id=1077
      李德威, 廖群安, 袁晏明, 等, 2003.喜马拉雅造山带中段日玛那麻粒岩锆石U-Pb年代学.科学通报, 48(20):2176-2179. doi: 10.3321/j.issn:0023-074X.2003.20.015
      廖群安, 李德威, 易顺华, 等, 2003.西藏定结高喜马拉雅石榴辉石岩-镁铁质麻粒岩的岩石特征及其地质意义.地球科学, 28(6):627-633. http://earth-science.net/WebPage/Article.aspx?id=1303
      刘德民, 李德威, 杨巍然, 2003.定结地区韧性剪切带变形特征与糜棱岩研究.地学前缘, 10(2):479-486. http://www.docin.com/p-24115591.html
      刘强, 邓玉彪, 向树元, 等, 2017.藏南仲巴地体早奥陶世构造-热事件及其地质意义.地球科学, 42(6):881-890. http://earth-science.net/WebPage/Article.aspx?id=3585
      刘树文, 张进江, 舒桂明, 等, 2005.藏南定结铁镁质麻粒岩矿物化学、PTt轨迹和折返过程.中国科学(D辑), 35(9):810-820. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200509002
      刘小汉, 琚宜太, 韦利杰, 等, 2009.再论雅鲁藏布江缝合带构造模型.中国科学(D辑), 39(4):448-463. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk200904008&dbname=CJFD&dbcode=CJFQ
      刘焰, 钟大赉, 1998.东喜马拉雅地区高压麻粒岩石学研究及构造意义.地质科学, 33(3):267-281. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200509002
      魏春景, 2011.变质作用P-T-t轨迹的研究方法与进展.地学前缘, 18(2):1-16. doi: 10.1360/N072016-00244
      肖文交, 敖松坚, 杨磊, 等, 2017.喜马拉雅汇聚带结构-属性解剖及印度-欧亚大陆最终拼贴格局.中国科学(D辑), 47(6):631-656. http://mall.cnki.net/magazine/Article/JDXK201706001.htm
      于俊杰, 曾令森, 刘静, 等, 2011.藏南定结地区早中新世淡色花岗岩的形成机制及其构造动力学意义.岩石学报, 27(7):1961-1972. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20110705&journal_id=ysxb
      张进江, 郭磊, 丁林, 2002.申扎-定结正断层体系中, 南段构造特征及其与藏南拆离系的关系.科学通报, 47(10):738-743. doi: 10.3321/j.issn:0023-074X.2002.10.003
      张泽明, 董昕, 贺振宇, 等, 2013.喜马拉雅造山带的高压超高压变质作用与印度-亚洲大陆碰撞.岩石学报, 29(5):1713-1726. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20130518
      张泽明, 郑来林, 王金丽, 等, 2007.东喜马拉雅构造结南迦巴瓦岩群中的石榴辉石岩-印度大陆向欧亚板块之下俯冲至80~100km深度的证据.地质通报, 26(1):1-12. doi: 10.3969/j.issn.1671-2552.2007.01.002
      周信, 仝来喜, 刘小汉, 等, 2014.东南极拉斯曼丘陵镁铁质麻粒岩的变质作用演化.岩石学报, 30(6):1731-1747. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20140615
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(3)

      Article views (4856) PDF downloads(47) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return