• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 43 Issue 2
    Feb.  2018
    Turn off MathJax
    Article Contents
    Wang Qianru, Chen Honghan, Zhao Yutao, Tang Daqing, 2018. Differences of Hydrocarbon Accumulation Periods in Silurian of Tazhong Northern Slope, Tarim Basin. Earth Science, 43(2): 577-593. doi: 10.3799/dqkx.2018.026
    Citation: Wang Qianru, Chen Honghan, Zhao Yutao, Tang Daqing, 2018. Differences of Hydrocarbon Accumulation Periods in Silurian of Tazhong Northern Slope, Tarim Basin. Earth Science, 43(2): 577-593. doi: 10.3799/dqkx.2018.026

    Differences of Hydrocarbon Accumulation Periods in Silurian of Tazhong Northern Slope, Tarim Basin

    doi: 10.3799/dqkx.2018.026
    • Received Date: 2017-08-16
    • Publish Date: 2018-02-15
    • Hydrocarbon accumulations of Silurian had obvious differences between shun 10 and shun 9 well blocks due to the influence of multi-cycle tectonic activity in Shuntuoguole area of Tarim basin. Researchers used a variety of technical methods to conduct an in-depth study of the Silurian accumulation period in the study area, but no consensus has yet been reached. On the basis of diagenesis and diagenetic sequences, hydrocarbon filling sequence and charging history in shun 10 and shun 9 well blocks are determined by fluid inclusion system analysis and burial history projection combined with micro FT-IR, microscopic fluorescence and cathodeluminescence analysis in this study. Results show that the shun 9 well block displays three oil-charging stages including Late Caledonian (419.6-398.1 Ma), Late Hercynian (271.5-224.0 Ma) and the Himalayan (11.4-1.1 Ma), while shun 10 well block displays only two oil-charging stages including Late Caledonian (419.6-408.4 Ma) and Late Hercynian (271.6-236.8 Ma). 3D seismic interpretation of strata section and faults in shun 9 well block shows that, NE strike-slip faults in Tazhong northern slope are important migration system for hydrocarbon migration in the Silurian, which determines the industrial oil output in this area. Hence, the key target for hydrocarbon exploration in the Silurian lies in reservoirs charged in the Himalayan.

       

    • loading
    • Alstadt, K.N., Katti, D.R., Katti, K.S., 2012.An In Situ FTIR Step-Scan Photoacoustic Investigation of Kerogen and Minerals in Oil Shale.Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 89:105-113. https://doi.org/10.1016/j.saa.2011.10.078
      Burruss, R., 1991.Practical Aspects of Fluorescence Microscopy of Petroleum Fluid Inclusions.Society of Economic Paleontologists & Mineralogists, 25(1):1-7. https://doi.org/10.2110/scn.91.25
      Chen, H.H., 2014.Microspectrofluorimetric Characterization and Thermal Maturity Assessment of Individual Oil Inclusion.Acta Petrolei Sinica, 35(3):584-590 (in Chinese with English abstract). https://www.researchgate.net/profile/Peter_Owens2/citations?sorting=recent&page=1
      Chen, H.H., Mi, L.J., Liu, Y.H., et al., 2017.Genesis, Distribution and Risk Belt Prediction of CO2 in Deep-Water Area in the Pearl River Mouth Basin.Acta Petrolei Sinica, 38(2):119-134 (in Chinese with English abstract). http://www.academia.edu/7708856/T3S5_O1_Beds_Bars_Bends_Banks_and_Basins_Construction_of_the_Seascape_and_Deep-Marine_Strata_by_Turbidity_Currents
      Ferket, H., Guilhaumou, N., Roure, F., et al., 2011.Insights from Fluid Inclusions, Thermal and PVT Modeling for Paleo-Burial and Thermal Reconstruction of the Córdoba Petroleum System (NE Mexico).Marine and Petroleum Geology, 28(4):936-958. https://doi.org/10.1016/j.marpetgeo.2010.01.020
      Ganz, H., Kalkreuth, W., 1987.Application of Infrared Spectroscopy to the Classification of Kerogen Types and the Evaluation of Source Rock and Oil Shale Potentials.Fuel, 66(5):708-711. https://doi.org/10.1016/0016-2361(87)90285-7
      Huang, H.P., Zhang, S.C., Su, J., 2016.Palaeozoic Oil-Source Correlation in the Tarim Basin, NW China:A Review.Organic Geochemistry, 94:32-46. https://doi.org/10.1016/j.orggeochem.2016.01.008
      Huang, T.Z., 2014.Structural Interpretation and Petroleum Exploration Targets in Northern Slope of Middle Tarim Basin.Petroleum Geology & Experiment, 36(3):257-267 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201403002.htm
      Huo, Z.P., Jiang, T., Pang, X.Q., et al., 2016.Evaluation of Deep Carbonate Source Rocks with Low TOC and Contribution to Oil-Gas Accumulation in Tazhong Area, Tarim Basin.Earth Science, 41(12):2061-2074 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.143
      Khorasani, G.K., 1987.Novel Development in Fluorescence Microscopy of Complex Organic Mixtures:Application in Petroleum Geochemistry.Organic Geochemistry, 11(3):157-168. https://doi.org/10.1016/0146-6380(87)90019-2
      Li, F., Jiang, Z.X., Li, Z., et al., 2016.Fluid Inclusion Characteristic and Hydrocarbon Charge History of Dibei Gas Reservoir in the Kuqa Depression.Journal of Central South University (Science and Technology), 47(2):515-523 (in Chinese with English abstract). https://www.scientific.net/amr.339.517.pdf
      Li, M.J., Hu, S.H., Wang, Q.G., et al., 2006.Discovery of Strike-Slip Fault System in Tazhong Area and Geologic Meaning.Oil Geophysical Prospecting, 41(1):116-121 (in Chinese with English abstract).
      Lis, G.P., Mastalerz, M., Schimmelmann, A., et al., 2005.FTIR Absorption Indices for Thermal Maturity in Comparison with Vitrinite Reflectance Ro in Type-Ⅱ Kerogens from Devonian Black Shales.Organic Geochemistry, 36(11):1533-1552. https://doi.org/10.1016/j.orggeochem.2005.07.001
      Liu, D.M., Jin, K.L., Wang, L.Z., 1999.Characteristics and Genesis of Silurian Bituminous Sandstone in the Tarim Basin.Geoscience, 13(2):49-55 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXW201201021.htm
      Liu, L.F., Fang, J.H., Wang, H.Y., 2001a.Petrological Characteristics of the Silurian Asphltic Sandstones in Talimu Basin and the Significance of Studying Them.Journal of Xi'an Petroleum Institute (Natural Science Edition), 16(1):16-22 (in Chinese with English abstract). doi: 10.1007/BF02873769
      Liu, L.F., Zhao, J.Z., Zhang, S.C., et al., 2001b.The Depositional and Structural Settings and the Bituminous Sandstone Distribution Characters of the Silurian in Tarim Basin.Acta Petrolei Sinica, 22(6):11-17 (in Chinese with English abstract). doi: 10.1007/BF03187450
      Liu, L.F., Zhao, J.Z., Zhang, S.C., et al., 2000a.Hydrocarbon Filling Ages and Evolution of the Silurian Asphalt Sandstones in Tarim Basin.Acta Sedimentologica Sinica, 18(3):475-479 (in Chinese with English abstract). doi: 10.1007/BF02873769
      Liu, L.F., Zhao, J.Z., Zhang, S.C., et al., 2000b.Genetic Types and Characteristics of the Silurian Asphaltic Sandstones in Tarim Basin.Acta Petrolei Sinica, 21(6):12-17 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1872579108600305
      Lu, X.S., Song, Y., Liu, S.B., et al., 2012.Detailed Analysis of Fluid Inclusions and Its Application in Accumulation History Research on Silurian Reservoirs in Tazhong Area, Tarim Basin.Journal of China University of Petroleum, 36(4):45-50, 76 (in Chinese with English abstract). https://www.researchgate.net/publication/288633871_Detailed_analysis_of_fluid_inclusions_and_its_application_in_accumulation_history_research_on_Silurian_reservoirs_in_Tazhong_area_Tarim_Basin
      Lü, X.X., Bai, Z.K., Zhao, F.Y., 2008.Hydrocarbon Accumulation and Distributional Characteristics of the Silurian Reservoirs in the Tazhong Uplift of the Tarim Basin.Earth Science Frontiers, 15(2):156-166 (in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60030-5
      Ma, Q.Y., Sha, X.G., Li, Y.L., et al., 2012.Characteristics of Strike-Slip Fault and Its Controlling on Oil in Shuntuoguole Region, Middle Tarim Basin.Petroleum Geology & Experiment, 34(2):120-124 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_sysydz201202003.aspx
      Ma, Z.Y., Huang, W., Li, J.J., et al., 2013.Geochemical Characteristics of Crude Oil from Lower Kalpintag Formation in SH9 Well Area, Northern Slope of Middle Tarim Basin.Petroleum Geology & Experiment, 35(5):559-563 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_sysydz201305016.aspx
      Munz, I.A., 2001.Petroleum Inclusions in Sedimentary Basins:Systematics, Analytical Methods and Applications.Lithos, 55(1-4):195-212. https://doi.org/10.1016/s0024-4937(00)00045-1
      Odeh, A.O., 2015.Qualitative and Quantitative ATR-FTIR Analysis and Its Application to Coal Char of Different Ranks.Journal of Fuel Chemistry and Technology, 43(2):129-137. https://doi.org/10.1016/s1872-5813(15)30001-3
      Okolo, G.N., Neomagus, H.W.J.P., Everson, R.C., et al., 2015.Chemical-Structural Properties of South African Bituminous Coals:Insights from Wide Angle XRD-Carbon Fraction Analysis, ATR-FTIR, Solid State 13C NMR, and HRTEM Techniques.Fuel, 158:779-792. https://doi.org/10.1016/j.fuel.2015.06.027
      Pironon, J., Barres, O., 1990.Semi-Quantitative FT-IR Microanalysis Limits:Evidence from Synthetic Hydrocarbon Fluid Inclusions in Sylvite.Geochimica et Cosmochimica Acta, 54(3):509-518. https://doi.org/10.1016/0016-7037(90)90348-o
      Pironon, J., Thiéry, R., Teinturier, S., et al., 2000.Water in Petroleum Inclusions:Evidence from Raman and FT-IR Measurements, PVT Consequences.Journal of Geochemical Exploration, 69-70:663-668. https://doi.org/10.1016/s0375-6742(00)00108-4
      Qin, Z.H., Chen, H., Yan, Y.J., et al., 2015.FTIR Quantitative Analysis upon Solubility of Carbon Disulfide/N-Methyl-2-Pyrrolidinone Mixed Solvent to Coal Petrographic Constituents.Fuel Processing Technology, 133:14-19. https://doi.org/10.1016/j.fuproc.2015.01.001
      Stasiuk, L.D., Snowdon, L.R., 1997.Fluorescence Micro-Spectrometry of Synthetic and Natural Hydrocarbon Fluid Inclusions:Crude Oil Chemistry, Density and Application to Petroleum Migration.Applied Geochemistry, 12(3):229-241. https://doi.org/10.1016/s0883-2927(96)00047-9
      Wang, Q.R., Chen, H.H., Hu, S.Z., et al., 2016.Curve-Fitting Analysis of Micro FT-IR and Its Application on Individual Oil Inclusion and Micro-Area Bitumens.Earth Science, 41(11):1921-1934 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.133
      Weng, S.F., 2010.Fourier Transform Infrared Spectrum Analysis.Chemical Industry Press, Beijing, 269-272 (in Chinese).
      Yang, S.B., Liu, J., Li, H.L, et al., 2013.Characteristics of the NE-Trending Strike-Slip Fault System and Its Control on Oil Accumulation in North Peri-Cline Area of the Tazhong Paleouplift.Oil & Gas Geology, 34(6):797-802 (in Chinese with English abstract). https://www.researchgate.net/publication/288172274_Fault_characteristics_and_hydrocarbon_geological_significances_in_Rongxingtun_structural_zone_of_East_sag_Liaohe_Depression
      Zhang, S.C., Su, J., Wang, X.M., et al., 2011.Geochemistry of Palaeozoic Marine Petroleum from the Tarim Basin, NW China:Part 3.Thermal Cracking of Liquid Hydrocarbons and Gas Washing as the Major Mechanisms for Deep Gas Condensate Accumulations.Organic Geochemistry, 42(11):1394-1410. https://doi.org/10.1016/j.orggeochem.2011.08.013
      Zhang, S.C., Zhang, B.M., Li, B.L., et al., 2011.History of Hydrocarbon Accumulations Spanning Important Tectonic Phases in Marine Sedimentary Basins of China:Taking the Tarim Basin as an Example.Petroleum Exploration and Development, 38(1):1-15 (in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60010-4
      Zhang, S.C., Zhang, B., Yang, H.J., et al., 2012.Adjustment and Alteration of Hydrocarbon Reservoirs during the Late Himalayan Period, Tarim Basin, NW China.Petroleum Exploration and Development, 39(6):668-680 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1876380412600962
      Zhang, Y.Y., Luo, X.Q., 2012.K-Ar and Ar-Ar Dating of Authigenic Illite and Hydrocarbon Accumulation History of Carboniferous and Silurian Sandstone Reservoirs in Well Ha 6, Tarim Basin.Acta Petrolei Sinica, 33(5):748-757 (in Chinese with English abstract). https://www.researchgate.net/publication/286722377_K-Ar_and_Ar-Ar_dating_of_authigenic_illite_and_hydrocarbon_accumulation_history_of_Carboniferous_and_Silurian_sandstone_reservoirs_in_Well_Ha_6_Tarim_Basin
      Zhang, Y.Y., Zwingmann, H., Liu, K.Y., et al., 2007.K-Ar Isotopic Dating of Authigenic Illite and Its Application to the Investigation of Hydrocarbon Accumulation History of the Silurian Bituminous Sandstone Reservoirs in the Tazhong Uplift, Tarim Basin.Oil & Gas Geology, 28(2):166-174 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200702009.htm
      Zhang, Y.Y., Zwingmann, H., Liu, K.Y., et al., 2011.Hydrocarbon Charge History of the Silurian Bituminous Sandstone Reservoirs in the Tazhong Uplift, Tarim Basin, China.AAPG Bulletin, 95(3):395-412. https://doi.org/10.1306/08241009208
      Zhao, J.Z., Li, Q.M., 2002.Hydrocarbon Accumulation Periods and History in Tarim Basin.Chinese Science Bulletin, 47(S1):116-121 (in Chinese). https://www.sciencedirect.com/science/article/pii/S1872579108600305
      陈红汉, 2014.单个油包裹体显微荧光特性与热成熟度评价.石油学报, 35(3):584-590. doi: 10.7623/syxb201403023
      陈红汉, 米立军, 刘妍鷨, 等, 2017.珠江口盆地深水区CO2成因、分布规律与风险带预测.石油学报, 38(2):119-134. doi: 10.7623/syxb201702001
      黄太柱, 2014.塔里木盆地塔中北坡构造解析与油气勘探方向.石油实验地质, 36(3):257-267. doi: 10.11781/sysydz201403257
      霍志鹏, 姜涛, 庞雄奇, 等, 2016.塔中地区深层低丰度碳酸盐岩有效烃源岩评价及其对油气藏的贡献.地球科学, 41(12):2061-2074. https://doi.org/10.3799/dqkx.2016.143
      李峰, 姜振学, 李卓, 等, 2016.库车坳陷迪北气藏流体包裹体特征及油气充注历史.中南大学学报(自然科学版), 47(2):515-523. doi: 10.11817/j.issn.1672-7207.2016.02.023
      李明杰, 胡少华, 王庆果, 2006.塔中地区走滑断裂体系的发现及其地质意义.石油地球物理勘探, 41(1):116-121. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203008.htm
      刘大锰, 金奎励, 王凌志.1999.塔里木盆地志留系沥青砂岩的特性及其成因.现代地质, 13(2):49-55. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xddz902.008&dbname=CJFD&dbcode=CJFQ
      刘洛夫, 方家虎, 王鸿燕, 2001a.塔里木盆地志留系沥青砂岩岩石学特征及其意义.西安石油大学学报(自然科学版), 16(1):16-22. http://www.cnki.com.cn/Article/CJFDTOTAL-NXSH201504025.htm
      刘洛夫, 赵建章, 张水昌, 等, 2001b.塔里木盆地志留系沉积构造及沥青砂岩的特征.石油学报, 22(6):11-17. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=syxb200106002&dbname=CJFD&dbcode=CJFQ
      刘洛夫, 赵建章, 张水昌, 等, 2000a.塔里木盆地志留系沥青砂岩的形成期次及演化.沉积学报, 18(3):475-479. http://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201504002.htm
      刘洛夫, 赵建章, 张水昌, 等, 2000b.塔里木盆地志留系沥青砂岩的成因类型及特征.石油学报, 21(6):12-17. https://www.wenkuxiazai.com/doc/65eb3ce7dd36a32d7275811e.html
      鲁雪松, 宋岩, 柳少波, 等, 2012.流体包裹体精细分析在塔中志留系油气成藏研究中的应用.中国石油大学学报(自然科学版), 36(4):45-50, 76. http://www.cnki.com.cn/Article/CJFDTOTAL-DQSY200903009.htm
      吕修祥, 白忠凯, 赵风云, 2008.塔里木盆地塔中隆起志留系油气成藏及分布特点.地学前缘, 15(2):156-166. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxqy200802021&dbname=CJFD&dbcode=CJFQ
      马庆佑, 沙旭光, 李玉兰, 等, 2012.塔中顺托果勒区块走滑断裂特征及控油作用.石油实验地质, 34(2):120-124. doi: 10.11781/sysydz201202120
      马中远, 黄苇, 李婧婧, 等, 2013.塔中北坡SH9井区柯坪塔格组下段原油地球化学特征.石油实验地质, 35(5):559-563. doi: 10.11781/sysydz201305559
      王倩茹, 陈红汉, 胡守志, 等, 2016.单个油包裹体和微区沥青显微红外光谱分峰拟合技术及应用.地球科学, 41(11):1921-1934. https://doi.org/10.3799/dqkx.2016.133
      翁诗甫, 2010.傅里叶变换红外光谱分析.北京:化学工业出版社, 269-272.
      杨圣彬, 刘军, 李慧莉, 等, 2013.塔中北围斜区北东向走滑断裂特征及其控油作用.石油与天然气地质, 34(6):797-802. doi: 10.11743/ogg20130612
      张水昌, 张宝民, 李本亮, 等, 2011.中国海相盆地跨重大构造期油气成藏历史—以塔里木盆地为例.石油勘探与开发, 38(1):1-15. https://wap.cnki.net/qikan-SKYK201206005.html
      张水昌, 张斌, 杨海军, 等, 2012.塔里木盆地喜马拉雅晚期油气藏调整与改造.石油勘探与开发, 39(6):668-680. https://wap.cnki.net/qikan-SKYK201206005.html
      张有瑜, 罗修泉, 2012.塔里木盆地哈6井石炭系、志留系砂岩自生伊利石K-Ar、Ar-Ar测年与成藏年代.石油学报, 33(5):748-757. doi: 10.7623/syxb201205003
      张有瑜, Zwingmann, H., 刘可禹, 等, 2007.塔中隆起志留系沥青砂岩油气储层自生伊利石K-Ar同位素测年研究与成藏年代探讨.石油与天然气地质, 28(2):166-174. doi: 10.11743/ogg20070206
      赵靖舟, 李启明, 2002.塔里木盆地克拉通区海相油气成藏期与成藏史.科学通报, 47(S1):116-121. http://www.oalib.com/paper/5025082
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)  / Tables(6)

      Article views (3812) PDF downloads(44) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return