Citation: | Fan Qi, Fan Tailiang, Li Yifan, Zhang Junpeng, Gao Zhiqian, Chen Yue, 2020. Paleo-Environments and Development Pattern of High-Quality Marine Source Rocks of the Early Cambrian, Northern Tarim Platform. Earth Science, 45(1): 285-302. doi: 10.3799/dqkx.2018.128 |
Adachi, M., Yamamoto, K., Sugisaki, R., 1986. Hydrothermal Chert and Associated Siliceous Rocks from the Northern Pacific Their Geological Significance as Indication of Ocean Ridge Activity. Sedimentary Geology, 47(1-2):125-148. https://doi.org/10.1016/0037-0738(86)90075-8
|
Algeo, T.J., Morford, J., Cruse, A., 2012. Editorial:New Applications of Trace Metals as Proxies in Marine Paleoenvironments. Chemical Geology, 306-307:160-164. https://doi.org/10.1016/j.chemgeo.2012.03.009.
|
Bau, M., Dulski, P., 1996. Distribution of Yttrium and Rare-Earth Elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa. Precambrian Research, 79(1-2):37-55. https://doi.org/10.1016/0301-9268(95)00087-9
|
Calvert, S.E., Pedersen, T.F., 2007. Chapter Fourteen Elemental Proxies for Palaeoclimatic and Palaeoceanographic Variability in Marine Sediments:Interpretation and Application. Developments in Marine Geology, 1:567-644. https://doi.org/10.1016/S1572-5480(07)01019-6
|
Chen, Q.L., Yang, X., Chu, C.L., et al., 2015. Recognition of Depositional Environment of Cambrian Source Rocks in Tarim Basin. Oil and Gas Geology, 36(6):880-887 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201506002
|
Dulski, P., 1994. Interferences of Oxide, Hydroxide and Chloride Analyte Species in the Determination of Rare Earth Elements in Geological Samples by Inductively Coupled Plasma-Mass Spectrometry. Fresenius' Journal of Analytical Chemistry, 350(4-5):194-203. https://doi.org/10.1007/bf00322470
|
Feng, Z.Z., 2005. Lithofacies Paleogeography of the Cambrian and Ordovician, the Tarim Basin. Petroleum Industry Publisher, Beijing (in Chinese).
|
Ganai, J.A., Rashid, S.A., 2015. Rare Earth Element Geochemistry of the Permo-Carboniferous Clastic Sedimentary Rocks from the Spiti Region, Tethys Himalaya:Significance of Eu and Ce Anomalies. Chinese Journal of Geochemistry, 34(2):252-264. https://doi.org/10.1007/s11631-015-0045-7
|
Ganeshram, R.S., Pedersen, T.F., Calvert, S., et al., 2002. Reduced Nitrogen Fixation in the Glacial Ocean Inferred from Changes in Marine Nitrogen and Phosphorus Inventories. Nature, 415(6868):156-159. https://doi.org/10.1038/415156a
|
Holser, W.T., 1997. Evaluation of the Application of Rare-Earth Elements to Paleoceanography. Palaeogeography, Palaeoclimatology, Palaeoecology, 132(1-4):309-323. https://doi.org/10.1016/s0031-0182(97)00069-2
|
Kidder, D.L., Krishnaswamy, R., Mapes, R. H., 2003. Elemental Mobility in Phosphatic Shales during Concretion Growth and Implications for Provenance Analysis. Chemical Geology, 198(3-4):335-353. https://doi.org/10.1016/s0009-2541(03)00036-6
|
Klinkhammer, G.P., Elderfield, H., Edmond, J.M., et al., 1994. Geochemical Implications of Rare Earth Element Patterns in Hydrothermal Fluids from Mid-Ocean Ridges. Geochimica et Cosmochimica Acta, 58(23):5105-5113. https://doi.org/10.1016/0016-7037(94)90297-6
|
Li, M.J., L, H.F., Mao, F, J., et al., 2018. Geochemical Assessment of Source Rock within a Stratigraphic Geochemical Framework:Taking Termit Basin (Niger) as an Example. Earth Science, 43(10):3603-3615 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201810020
|
Li, R.J., Zhang, H.A., Qian, Y.X., et al., 2010. The Collision Time of South Tianshan Orogen, NW China. Chinese Journal of Geology, 45(1):57-65 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZKX201001007.htm
|
Li, Y.F., Fan, T.L., Zhang, J.C., et al., 2015. Geochemical Changes in the Early Cambrian Interval of the Yangtze Platform, South China:Implications for Hydrothermal Influences and Paleocean Redox Conditions. Journal of Asian Earth Sciences, 109:100-123. https://doi.org/10.1016/j.jseaes.2015.05.003
|
McLennan, S.M., 2001. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2(4):1021. https://doi.org/10.1029/2000gc000109
|
Morford, J.L., Emerson, S., 1999. The Geochemistry of Redox Sensitive Trace Metals in Sediments. Geochimica et Cosmochimica Acta, 63(11-12):1735-1750. https://doi.org/10.1016/s0016-7037(99)00126-x
|
Murray, R.W., 1994. Chemical Criteria to Identify the Depositional Environment of Chert:General Principles and Applications. Sedimentary Geology, 90(3-4):213-232. https://doi.org/10.1016/0037-0738(94)90039-6
|
Nance, W.B., Taylor, S.R., 1976. Rare Earth Element Patterns and Crustal Evolution-I. Australian Post-Archean Sedimentary Rocks. Geochimica et Cosmochimica Acta, 40(12):1539-1551. https://doi.org/10.1016/0016-7037(76)90093-4
|
Sanders, C.J., Caldeira, P.P., Smoak, J.M., et al., 2014. Recent Organic Carbon Accumulation (~100 Years) along the Cabo Frio, Brazil Upwelling Region. Continental Shelf Research, 75:68-75. https://doi.org/10.1016/j.csr.2013.10.009
|
Schoepfer, S.D., Shen, J., Wei, H.Y., et al., 2015. Total Organic Carbon, Organic Phosphorus, and Biogenic Barium Fluxes as Proxies for Paleomarine Productivity. Earth-Science Reviews, 149:23-52. https://doi.org/10.1016/j.earscirev.2014.08.017
|
Tao, G.L., Shen, B.J., Ten, G.E., et al., 2016. Weathering Effects on High-Maturity Organic Matter in a Black Rock Series:A Case Study of the Yuertusi Formation in Kalpin Area, Tarim Basin. Petroleum Geology and Experiment, 38(3):375-381 (in Chinese with English abstract).
|
Taylor, S.R., McLennan, S.M., 1985. The Continental Crust Its Composition and Evolution. Blackwell, Oxford.
|
Tribovillard, N., Algeo, T.J., Baudin, F., et al., 2012. Analysis of Marine Environmental Conditions Based On molybdenum-uranium Covariation-Applications to Mesozoic Paleoceanography. Chemical Geology. 324-325:46-58. https://doi.org/10.1016/j.chemgeo.2011.09.009
|
Wang, W.Y., Xiao, B., Zhang, S.G.., et al., 1985. Division and Correlation of Cambrian System in Aksu-Wushi District of Xinjiang. Xinjiang Geology, 3(4):59-74 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI198504008.htm
|
Wilde, P., Quinby-Hunt, M. S., Erdtmann, B. D., 1996. The Whole-Rock Cerium Anomaly:A Potential Indicator of Eustatic Sea-Level Changes in Shales of the Anoxic Facies. Sedimentary Geology, 101(1-2):43-53. https://doi.org/10.1016/0037-0738(95)00020-8
|
Yang, X., Li, H.L., Zhang, Z.P., et al., 2017. Evolution of Neoproterozoic Tarim Basin in Northwestern China and Tectonic Background of the Lower Cambrian Hydrocarbon Source Rocks. Acta Geological Sinica, 91(8):1706-1719 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201708004
|
Yang, Z.Y., Luo, P., Liu, B., et al., 2017. The Depositional Characteristics of Earliest Cambrian Hydrothermal Fluid:A Case Study of Siliceous Rocks from Yurtus Formation in the Aksu area of Tarim Basin, Northwest China. Earth Science, 44(11):3845-3870 (in Chinese with English abstract).
|
Yao, C.Y., Dong, Y.G., Gao, W.H., 2014. Paleoenvironment and Origin of the Sedimentary Phosphorite of the Yurtus Formation (Early Cambrian, Sugetbrak Phosphorite Deposit, Tarim Basin). Acta Geologica Sinica-English Edition, 88(S2):271-272. https://doi.org/10.1111/1755-6724.12370_13
|
Yu, B.S., Dong, H.L., Widom, E., et al., 2009. Geochemistry of Basal Cambrian Black Shales and Cherts from the Northern Tarim Basin, Northwest China:Implications for Depositional Setting and Tectonic History. Journal of Asian Earth Sciences, 34(3):418-436. https://doi.org/10.1016/j.jseaes.2008.07.003
|
Zhang, G.Y., Liu, W., Zhang, L., et al., 2015. Cambrian-Ordovician Prototypic Basin, Paleogeography and Petroleum of Tarim Craton. Earth Science Frontiers, 22(3):269-276 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201503023
|
Zhang, J.P., Fan, T.L., Algeo, T.J., 2016. Paleo-Marine Environments of the Early Cambrian Yangtze Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 443:66-79. https://doi.org/10.1016/j.palaeo.2015.11.029
|
Zhang, X., Zhuang, X.G., Tu, Q.J., et al., 2018. Depositional Process and Mechanism of Organic Matter Accumulation of Lucaogou Shale in Southern Junggar Basin, Northwest China. Earth Science, 43(2):538-550 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201802015
|
Zhu, G.Y., Chen, F.R., Chen, Z.Y., et al., 2016.Discovery and Basic Characteristics of the High-Quality Source Rocks of the Cambrian Yuertusi Formation in Tarim Basin. Natural Gas Geoscience, 27(1):8-21 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201601002
|
陈强路, 杨鑫, 储呈林, 等, 2015.塔里木盆地寒武系烃源岩沉积环境再认识.石油与天然气地质, 36(6):880-887. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201506002
|
冯增昭, 2005.塔里木地区寒武纪和奥陶纪岩相古地理.北京:石油工业出版社.
|
李美俊, 赖洪飞, 毛凤军, 等, 2018.层序地层格架下烃源岩地球化学研究:以尼日尔Termit盆地为例.地球科学, 43(10):3603-3615. doi: 10.3799/dqkx.2018.223
|
李日俊, 张洪安, 钱一雄, 等, 2010.关于南天山碰撞造山时代的讨论.地质科学, 45(1):57-65. doi: 10.3969/j.issn.0563-5020.2010.01.006
|
陶国亮, 申宝剑, 腾格尔, 等, 2016.风化作用对高演化黑色岩系有机质影响因素分析——以塔里木盆地柯坪地区玉尔吐斯组为例.石油实验地质, 38(3):375-381. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201603014
|
王务严, 肖兵, 章森桂, 等, 1985.新疆阿克苏-乌什地区寒武系划分与对比.新疆地质. 3(4):59-74.
|
杨鑫, 李慧莉, 张仲培, 等, 2017.塔里木新元古代盆地演化与下寒武统烃源岩发育的构造背景.地质学报, 91(8):1706-1719. doi: 10.3969/j.issn.0001-5717.2017.08.004
|
杨宗玉, 罗平, 刘波, 等, 2017.早寒武世早期热液沉积特征:以塔里木盆地西北缘玉尔吐斯组底部硅质岩系为例.地球科学, 44(11):3845-3870. doi: 10.3799/dqkx.2017.502
|
张光亚, 刘伟, 张磊, 等, 2015.塔里木克拉通寒武纪-奥陶纪原型盆地、岩相古地理与油气.地学前缘, 22(3):269-276.
|
张逊, 庄新国, 涂其军, 等, 2018.准噶尔盆地南缘芦草沟组页岩的沉积过程及有机质富集机理.地球科学, 43(2):538-550. doi: 10.3799/dqkx.2017.603
|
朱光有, 陈斐然, 陈志勇, 等, 2016.塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征.天然气地球科学, 27(1):8-21. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201601002
|
![]() |
![]() |