• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 43 Issue 11
    Nov.  2018
    Turn off MathJax
    Article Contents
    Zhao Xiangkuan, Shi Xiaoying, Wang Xinqiang, Tang Dongjie, 2018. Stepwise Oxygenation of Early Cambrian Ocean Drove Early Metazoan Diversification. Earth Science, 43(11): 3873-3890. doi: 10.3799/dqkx.2018.143
    Citation: Zhao Xiangkuan, Shi Xiaoying, Wang Xinqiang, Tang Dongjie, 2018. Stepwise Oxygenation of Early Cambrian Ocean Drove Early Metazoan Diversification. Earth Science, 43(11): 3873-3890. doi: 10.3799/dqkx.2018.143

    Stepwise Oxygenation of Early Cambrian Ocean Drove Early Metazoan Diversification

    doi: 10.3799/dqkx.2018.143
    • Received Date: 2018-04-17
    • Publish Date: 2018-11-15
    • Ediacaran-Cambrian transition is a critical period in Earth history, during which both marine environment and life have experienced drastic changes. It is arguably suggested that pervasive oxygenation and associated geochemical changes in the ocean have potentially driven the rapid diversification of Early Cambrian metazoans, however, the timing and process of ocean oxygenation have not been well constrained. In this paper, an integrated study was conducted on the Lower Cambrian Niutitang (NTT) Fm. in Siduping area, West Hunan and Songjiang Bridge area, East Guizhou, which were paleogeographically situated at the shelf margin-upper slope setting of the Yangtze block. Using ICP-MS, FESEM, EDS and XRD techniques, the abundances and patterns of RSE (redox sensitive elements), pyrite morphology, TOC (total organic carbon), as well as N, P nutrients were investigated systematically. The results show that during NTT deposition, bottom seawaters in the study area experienced a complicated evolution, with a dynamic alternation of 3 ferruginous and 3 euxinic intervals, and suboxic-oxic conditions occurring only at the latest Cambrian Stage 3. Comparison with relevant data published previously from each facies belts within the Yangtze block shows that the seawater oxygenation was a progressive process expanding from shallow water area to deep-water area in time. Platform facies area oxygenated at the late Stage 2, shelf margin area in the late Stage 3, and the deep-water basin kept ferruginous until the latest Stage 3, when it became euxinic. Sediment Mo/TOC, U/TOC ratios increased from bottom to top consecutively in the section, coupled with elevated Cr, Mn, N and P secular trends, likely indicating an overall enhancement of seawater oxygenation. The spatial-temporal distribution and increased paleoecologic complexity of major fossil groups in the Yangtze block over time show a well coincidence with the seawater oxygenation process, likely implying that increased ocean oxygenation and declined euxinic seawaters have facilitated the rapid diversification of Early Cambrian metazoans.

       

    • loading
    • Algeo, T.J., Lyons, T.W., 2006.Mo-Total Organic Carbon Covariation in Modern Anoxic Marine Environments:Implications for Analysis of Paleoredox and Paleohydrographic Conditions.Paleoceanography, 21(1):1-23. https://doi.org/10.1029/2004pa001112
      Algeo, T.J., Rowe, H., 2012.Paleoceanographic Applications of Trace-Metal Concentration Data.Chemical Geology, 324-325:6-18. https://doi.org/10.1016/j.chemgeo.2011.09.002
      Cai, C., Xiang, L., Yuan, Y., et al., 2015.Marine C, S and N Biogeochemical Processes in the Redox-Stratified Early Cambrian Yangtze Ocean.Journal of the Geological Society, 172(3):390-406. https://doi.org/10.1144/jgs2014-054
      Chen, D.Z., Zhou, X.Q., Fu, Y., et al., 2015a.New U-Pb Zircon Ages of the Ediacaran-Cambrian Boundary Strata in South China.Terra Nova, 27(1):62-68. https://doi.org/10.1111/ter.12134
      Chen, X., Ling, H.F., Vance, D., et al., 2015b.Rise to Modern Levels of Ocean Oxygenation Coincided with the Cambrian Radiation of Animals.Nature Communications, 6(1):7142. https://doi.org/10.1038/ncomms8142
      Cheng, M., Li, C., Zhou, L., et al., 2016.Marine Mo Biogeochemistry in the Context of Dynamically Euxinic Mid-Depth Waters:A Case Study of the Lower Cambrian Niutitang Shales, South China.Geochimica et Cosmochimica Acta, 183:79-93. https://doi.org/10.1016/j.gca.2016.03.035
      Erwin, D.H., 2011.Evolutionary Uniformitarianism.Developmental Biology, 357:27-34. https://doi.org/10.1016/j.ydbio.2011.01.020
      Feng, L.J., Li, C., Huang, J., et al., 2014.A Sulfate Control on Marine Mid-Depth Euxinia on the Early Cambrian (ca.529-521 Ma) Yangtze Platform, South China.Precambrian Research, 246:123-133. https://doi.org/10.1016/j.precamres.2014.03.002
      Föllmi, K.B., 1996.The Phosphorus Cycle, Phosphogenesis and Marine Phosphate-Rich Deposits.Earth-Science Reviews, 40(1-2):55-124. https://doi.org/10.1016/0012-8252(95)00049-6
      Frei, R., Gaucher, C., Døssing, L.N., et al., 2011.Chromium Isotopes in Carbonates-A Tracer for Climate Change and for Reconstructing the Redox State of Ancient Seawater.Earth and Planetary Science Letters, 312(1-2):114-125. https://doi.org/10.1016/j.epsl.2011.10.009
      Frei, R., Gaucher, C., Poulton, S.W., et al., 2009.Fluctuations in Precambrian Atmospheric Oxygenation Recorded by Chromium Isotopes.Nature, 461(7261):250-253. https://doi.org/10.1038/nature08266
      Fu, Y., Dong, L., Li, C., et al., 2016.New Re-Os Isotopic Constrains on the Formation of the Metalliferous Deposits of the Lower Cambrian Niutitang Formation.Journal of Earth Science, 27(2):271-281. https://doi.org/10.1007/s12583-016-0606-7
      Gao, P., Liu, G.D., Jia, C.Z., et al., 2016.Redox Variations and Organic Matter Accumulation on the Yangtze Carbonate Platform during Late Ediacaran-Early Cambrian:Constraints from Petrology and Geochemistry.Palaeogeography, Palaeoclimatology, Palaeoecology, 450:91-110. https://doi.org/10.1016/j.palaeo.2016.02.058
      Gilleaudeau, G.J., Frei, R., Kaufman, A.J., et al., 2016.Oxygenation of the Mid-Proterozoic Atmosphere:Clues from Chromium Isotopes in Carbonates.Geochemical Perspectives Letters, 178-187. https://doi.org/10.7185/geochemlet.1618
      Gilleaudeau, G.J., Kah, L.C., 2013.Oceanic Molybdenum Drawdown by Epeiric Sea Expansion in the Mesoproterozoic.Chemical Geology, 356:21-37. https://doi.org/10.1016/j.chemgeo.2013.07.004
      Glass, J.B., Wolfe-Simon, F., Anbar, A.D., 2009.Coevolution of Metal Availability and Nitrogen Assimilation in Cyanobacteria and Algae.Geobiology, 7(2):100-123. https://doi.org/10.1111/j.1472-4669.2009.00190.x
      Goldberg, T., Strauss, H., Guo, Q.J., et al., 2007.Reconstructing Marine Redox Conditions for the Early Cambrian Yangtze Platform:Evidence from Biogenic Sulphur and Organic Carbon Isotopes.Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2):175-193. https://doi.org/10.1016/j.palaeo.2007.03.015
      Guo, Q.J., Shields, G.A., Liu, C.Q., et al., 2007.Trace Element Chemostratigraphy of Two Ediacaran-Cambrian Successions in South China:Implications for Organosedimentary Metal Enrichment and Silicification in the Early Cambrian.Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2):194-216. https://doi.org/10.1016/j.palaeo.2007.03.016
      Jiang, G.Q., Wang, X.Q., Shi, X.Y., et al., 2012.The Origin of Decoupled Carbonate and Organic Carbon Isotope Signatures in the Early Cambrian (ca.542-520 Ma) Yangtze Platform.Earth and Planetary Science Letters, 317-318:96-110. https://doi.org/10.1016/j.epsl.2011.11.018
      Jiang, S.Y., Yang, J.H., Ling, H.F., et al., 2007.Extreme Enrichment of Polymetallic Ni-Mo-PGE-Au in Lower Cambrian Black Shales of South China:An Os Isotope and PGE Geochemical Investigation.Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2):217-228. https://doi.org/10.1016/j.palaeo.2007.03.024
      Jin, C.S., Li, C., Algeo, T.J., et al., 2016.A Highly Redox-Heterogeneous Ocean in South China during the Early Cambrian (~529-514 Ma):Implications for Biota-Environment Co-Evolution.Earth and Planetary Science Letters, 441:38-51. https://doi.org/10.1016/j.epsl.2016.02.019
      Johnson, J.E., Webb, S.M., Ma, C., et al., 2016.Manganese Mineralogy and Diagenesis in the Sedimentary Rock Record.Geochimica et Cosmochimica Acta, 173:210-231. https://doi.org/10.1016/j.gca.2015.10.027
      Lan, Z.W., Li, X.H., Chu, X.L., et al., 2017.SIMS U-Pb Zircon Ages and Ni-Mo-PGE Geochemistry of the Lower Cambrian Niutitang Formation in South China:Constraints on Ni-Mo-PGE Mineralization and Stratigraphic Correlations.Journal of Asian Earth Sciences, 137:141-162. https://doi.org/10.1016/j.jseaes.2016.12.046
      Landing, E., Geyer, G., Brasier, M.D., et al., 2013.Cambrian Evolutionary Radiation:Context, Correlation, and Chronostratigraphy-Overcoming Deficiencies of the First Appearance Datum (FAD) Concept.Earth-Science Reviews, 123:133-172. https://doi.org/10.1016/j.earscirev.2013.03.008
      Li, C., Jin, C.S., Planavsky, N.J., et al., 2017.Coupled Oceanic Oxygenation and Metazoan Diversification during the Early-Middle Cambrian? Geology, 45(8):743-746. https://doi.org/10.1130/g39208.1
      Li, Z.X., Bogdanova, S.V., Collins, A.S., et al., 2008.Assembly, Configuration, and Break-up History of Rodinia:A Synthesis.Precambrian Research, 160(1-2):179-210. https://doi.org/10.1016/j.precamres.2007.04.021
      McLennan, S.M., 2001.Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust.Geochemistry, Geophysics, Geosystems, 2(4):203-236. https://doi.org/10.1029/2000gc000109
      Mills, D.B., Ward, L.M., Jones, C., et al., 2014.Oxygen Requirements of the Earliest Animals.Proceedings of the National Academy of Sciences of the United States of America, 111(11):4168-4172. https://doi.org/10.1073/pnas.1400547111
      Och, L.M., Shields-Zhou, G.A., Poulton, S.W., et al., 2013.Redox Changes in Early Cambrian Black Shales at Xiaotan Section, Yunnan Province, South China.Precambrian Research, 225:166-189. https://doi.org/10.1016/j.precamres.2011.10.005
      Okada, Y., Sawaki, Y., Komiya, T., et al., 2014.New Chronological Constraints for Cryogenian to Cambrian Rocks in the Three Gorges, Weng'an and Chengjiang Areas, South China.Gondwana Research, 25(3):1027-1044. https://doi.org/10.1016/j.gr.2013.05.001
      Pang, Y.C., Lin, L., Xu, K., et al., 2016.Worm-Like Fossil Assemblage from Niutitang Formation of Fuquan County, Guizhou Province.Earth Science, 41(4):612-618 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201604006
      Papineau, D., Purohit, R., Fogel, M.L., et al., 2013.High Phosphate Availability as a Possible Cause for Massive Cyanobacterial Production of Oxygen in the Paleoproterozoic Atmosphere.Earth and Planetary Science Letters, 362:225-236. https://doi.org/10.1016/j.epsl.2012.11.050
      Peng, S.C., Babcock, L.E., Cooper, R.A., 2012.The Cambrian Period.In: Gradstein, F.M., Ogg, J.G., Schmitz, M., et al., eds., The Geologic Time Scale 2012.Elsevier, Amsterdam, 438-477.https://doi.org/10.1016/B978-0-444-59425-9.00019-6
      Planavsky, N.J., Reinhard, C.T., Wang, X., et al., 2014.Low Mid-Proterozoic Atmospheric Oxygen Levels and the Delayed Rise of Animals.Science, 346(6209):635-638. https://doi.org/10.1126/science.1258410
      Reinhard, C.T., Planavsky, N.J., Gill, B.C., et al., 2017.Evolution of the Global Phosphorus Cycle.Nature, 541(7637):386-389. https://doi.org/10.1038/nature20772
      Sahoo, S.K., Planavsky, N.J., Kendall, B., et al., 2012.Ocean Oxygenation in the Wake of the Marinoan Glaciation.Nature, 489(7417):546-549. https://doi.org/10.1038/nature11445
      Sato, T., Isozaki, Y., Hitachi, T., et al., 2014.A Unique Condition for Early Diversification of Small Shelly Fossils in the Lowermost Cambrian in Chengjiang, South China:Enrichment of Phosphorus in Restricted Embayments.Gondwana Research, 25(3):1139-1152. https://doi.org/10.1016/j.gr.2013.07.010
      Scott, C., Lyons, T.W., 2012.Contrasting Molybdenum Cycling and Isotopic Properties in Euxinic versus Non-Euxinic Sediments and Sedimentary Rocks:Refining the Paleoproxies.Chemical Geology, 324-325:19-27. https://doi.org/10.1016/j.chemgeo.2012.05.012
      Scott, C., Lyons, T.W., Bekker, A., et al., 2008.Tracing the Stepwise Oxygenation of the Proterozoic Ocean.Nature, 452(7186):456-459. https://doi.org/10.1038/nature06811
      Shu, D.G., 2008.Cambrian Explosion:Birth of Tree of Animals.Gondwana Research, 14(1-2):219-240. https://doi.org/10.1016/j.gr.2007.08.004
      Shu, D.G., Isozaki, Y., Zhang, X.L., et al., 2014.Birth and Early Evolution of Metazoans.Gondwana Research, 25(3):884-895. https://doi.org/10.1016/j.gr.2013.09.001
      Smith, M.P., Harper, D.A.T., 2013.Causes of the Cambrian Explosion.Science, 341(6152):1355-1356. https://doi.org/10.1126/science.1239450
      Sperling, E.A., Frieder, C.A., Raman, A.V., et al., 2013.Oxygen, Ecology, and the Cambrian Radiation of Animals.Proceedings of the National Academy of Sciences of the United States of America, 110(33):13446-13451. https://doi.org/10.1073/pnas.1312778110
      Steiner, M., Li, G.X., Qian, Y., et al., 2007.Neoproterozoic to Early Cambrian Small Shelly Fossil Assemblages and a Revised Biostratigraphic Correlation of the Yangtze Platform (China).Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2):67-99. https://doi.org/10.1016/j.palaeo.2007.03.046
      Tostevin, R., Wood, R.A., Shields, G.A., et al., 2016.Low-Oxygen Waters Limited Habitable Space for Early Animals.Nature Communications, 7:12818. https://doi.org/10.1038/ncomms12818
      Tribovillard, N., Algeo, T.J., Baudin, F., et al., 2012.Analysis of Marine Environmental Conditions Based on Molybdenum-Uranium Covariation-Applications to Mesozoic Paleoceanography.Chemical Geology, 324-325:46-58. https://doi.org/10.1016/j.chemgeo.2011.09.009
      Tribovillard, N., Algeo, T.J., Lyons, T., et al., 2006.Trace Metals as Paleoredox and Paleoproductivity Proxies:An Update.Chemical Geology, 232(1-2):12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012
      Wang, D., Struck, U., Ling, H.F., et al., 2015a.Marine Redox Variations and Nitrogen Cycle of the Early Cambrian Southern Margin of the Yangtze Platform, South China:Evidence from Nitrogen and Organic Carbon Isotopes.Precambrian Research, 267:209-226. https://doi.org/10.1016/j.precamres.2015.06.009
      Wang, X.Q., Shi, X.Y., Zhao, X.K., et al., 2015b.Increase of Seawater Mo Inventory and Ocean Oxygenation during the Early Cambrian.Palaeogeography, Palaeoclimatology, Palaeoecology, 440:621-631. https://doi.org/10.1016/j.palaeo.2015.09.003
      Wang, J.G., Chen, D.Z., Yan, D.T., et al., 2012a.Evolution from an Anoxic to Oxic Deep Ocean during the Ediacaran-Cambrian Transition and Implications for Bioradiation.Chemical Geology, 306-307:129-138. https://doi.org/10.1016/j.chemgeo.2012.03.005
      Wang, L., Shi, X.Y., Jiang, G.Q., 2012b.Pyrite Morphology and Redox Fluctuations Recorded in the Ediacaran Doushantuo Formation.Palaeogeography, Palaeoclimatology, Palaeoecology, 333-334:218-227. https://doi.org/10.1016/j.palaeo.2012.03.033
      Wang, X.Q., Shi, X.Y., Jiang, G.Q., et al., 2012c.New U-Pb Age from the Basal Niutitang Formation in South China:Implications for Diachronous Development and Condensation of Stratigraphic Units across the Yangtze Platform at the Ediacaran-Cambrian Transition.Journal of Asian Earth Sciences, 48:1-8. https://doi.org/10.1016/j.jseaes.2011.12.023
      Wignall, P.B., Newton, R., 1998.Pyrite Framboid Diameter as a Measure of Oxygen Deficiency in Ancient Mudrocks.American Journal of Science, 298(7):537-552. https://doi.org/10.2475/ajs.298.7.537
      Wilkin, R.T., Barnes, H.L., Brantley, S.L., 1996.The Size Distribution of Framboidal Pyrite in Modern Sediments:An Indicator of Redox Conditions.Geochimica et Cosmochimica Acta, 60(20):3897-3912. https://doi.org/10.1016/0016-7037(96)00209-8
      Xiang, L., Schoepfer, S.D., Shen, S.Z., et al., 2017.Evolution of Oceanic Molybdenum and Uranium Reservoir Size around the Ediacaran-Cambrian Transition:Evidence from Western Zhejiang, South China.Earth and Planetary Science Letters, 464:84-94. https://doi.org/10.1016/j.epsl.2017.02.012
      Xiao, S.H., Laflamme, M., 2009.On the Eve of Animal Radiation:Phylogeny, Ecology and Evolution of the Ediacara Biota.Trends in Ecology and Evolution, 24(1):31-40. https://doi.org/10.1016/j.tree.2008.07.015
      Xu, L.G., Lehmann, B., Mao, J.W., et al., 2012.Mo Isotope and Trace Element Patterns of Lower Cambrian Black Shales in South China:Multi-Proxy Constraints on the Paleoenvironment.Chemical Geology, 318-319:45-59. https://doi.org/10.1016/j.chemgeo.2012.05.016
      Xu, L.G., Lehmann, B., Mao, J.W., et al., 2011.Re-Os Age of Polymetallic Ni-Mo-PGE-Au Mineralization in Early Cambrian Black Shales of South China-A Reassessment.Economic Geology, 106(3):511-522. https://doi.org/10.2113/econgeo.106.3.511
      Xu, Z., Shi, W.Z., Zhai, G.Y., et al., 2017.Relationship Differences and Causes between Porosity and Organic Carbon in Black Shales of the Lower Cambrian and the Lower Silurian in Yangtze Area.Earth Science, 42(7):1223-1234 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201707017
      Yang, B., Steiner, M., Li, G.X., et al., 2014.Terreneuvian Small Shelly Faunas of East Yunnan (South China) and Their Biostratigraphic Implications.Palaeogeography, Palaeoclimatology, Paleoecology, 398:28-58. https://doi.org/10.1016/j.palaeo.2013.07.003
      Yang, C., Zhu, M.Y., Condon, D.J., et al., 2017.Geochronological Constraints on Stratigraphic Correlation and Oceanic Oxygenation in Ediacaran-Cambrian Transition in South China.Journal of Asian Earth Sciences, 140:75-81. https://doi.org/10.1016/j.jseaes.2017.03.017
      Yang, X.L., Zhao, Y.L., Zhu, M.Y., et al., 2010.Sponge Spicule Fossils from the Jiumenchong and Zhalagou Formations (Cambrian) of Guizhou.Acta Micropalaeontologica Sinica, 27(3):243-252 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201002369336
      Yuan, Y.Y., Cai, C.F., Wang, T.K., et al., 2014.Redox Condition during Ediacaran-Cambrian Transition in the Lower Yangtze Deep Water Basin, South China:Constraints from Iron Speciation and δ13Corg in the Diben Section, Zhejiang.Chinese Science Bulletin, 59(28):3638-3649. https://doi.org/10.1007/s11434-014-0483-3
      Zhang, J.P., Fan, T.L., Algeo, T.J., et al., 2016.Paleo-Marine Environments of the Early Cambrian Yangtze Platform.Palaeogeography, Palaeoclimatology, Palaeoecology, 443:66-79. https://doi.org/10.1016/j.palaeo.2015.11.029
      Zhang, X.L., Cui, L.H., 2016.Oxygen Requirements for the Cambrian Explosion.Journal of Earth Science, 27(2):187-195. https://doi.org/10.1007/s12583-016-0690-8
      Zhang, X.L., Shu, D.G., Han, J., et al., 2014.Triggers for the Cambrian Explosion:Hypotheses and Problems.Gondwana Research, 25(3):896-909. https://doi.org/10.1016/j.gr.2013.06.001
      Zhang, Y.Y., He, Z.L., Jiang, S., et al., 2017.Marine Redox Stratification during the Early Cambrian (ca.529-509 Ma) and Its Control on the Development of Organic-Rich Shales in Yangtze Platform.Geochemistry, Geophysics, Geosystems, 18(6):2354-2369. https://doi.org/10.1002/2017gc006864
      Zhao, F.C., Hu, S.X., Caron, J.B., et al., 2012.Spatial Variation in the Diversity and Composition of the Lower Cambrian (Series 2, Stage 3) Chengjiang Biota, Southwest China.Palaeogeography, Palaeoclimatology, Palaeoecology, 346-347:54-65. https://doi.org/10.1016/j.palaeo.2012.05.021
      Zhao, J.H., Zhou, M.F., Yan, D.P., et al., 2011.Reappraisal of the Ages of Neoproterozoic Strata in South China:No Connection with the Grenvillian Orogeny.Geology, 39(4):299-302. https://doi.org/10.1130/g31701.1
      Zhou, C.M., Jiang, S.Y., 2009.Palaeoceanographic Redox Environments for the Lower Cambrian Hetang Formation in South China:Evidence from Pyrite Framboids, Redox Sensitive Trace Elements, and Sponge Biota Occurrence.Palaeogeography, Palaeoclimatology, Palaeoecology, 271(3-4):279-286. https://doi.org/10.1016/j.palaeo.2008.10.024
      Zhou, M.Z., Luo, T.Y., Liu, S.R., et al., 2013.SHRIMP Zircon Age for a K-Bentonite in the Top of the Laobao Formation at the Pingyin Section, Guizhou, South China.Science China Earth Sciences, 56(10):1677-1687. https://doi.org/10.1007/s11430-013-4604-7
      Zhu, B., Jiang, S.Y., Yang, J.H., et al., 2014.Rare Earth Element and Sr-Nd Isotope Geochemistry of Phosphate Nodules from the Lower Cambrian Niutitang Formation, NW Hunan Province, South China.Palaeogeography, Palaeoclimatology, Palaeoecology, 398:132-143. https://doi.org/10.1016/j.palaeo.2013.10.002
      Zhu, M.Y., 2010.The Origin and Cambrian Explosion of Animals:Fossil Evidences from China.Acta Palaeontologica Sinica, 49(3):269-287 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zggdxxxswz-swx200801017
      庞艳春, 林丽, 徐可, 等, 2016.贵州福泉牛蹄塘组蠕虫状化石组合的发现.地球科学, 41(4):612-618. http://earth-science.net/WebPage/Article.aspx?id=3278
      徐壮, 石万忠, 翟刚毅, 等, 2017.扬子地区下寒武统与下志留统黑色页岩孔隙度与有机碳关系差异性及原因.地球科学, 42(7):1223-1234. http://earth-science.net/WebPage/Article.aspx?id=3597
      杨兴莲, 赵元龙, 朱茂炎, 等, 2010.贵州寒武系九门冲组和渣拉沟组中的海绵骨针化石.微体古生物学报, 27(3):243-252. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201002369336
      朱茂炎, 2010.动物的起源和寒武纪大爆发:来自中国的化石证据.古生物学报, 49(3):269-287. http://d.old.wanfangdata.com.cn/Periodical/huas200402006
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(4)

      Article views (6046) PDF downloads(84) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return