• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 43 Issue 9
    Sep.  2018
    Turn off MathJax
    Article Contents
    Zhang Wendong, Wu Xiangbin, Deng Xiaohua, Mao Qigui, Zhang Huiqiong, Yang Liya, Chen Xi, Xu Jun, Zhang Yan, Wang Yang, 2018. Fluid Inclusions Constraints on the Origin of the Xiaorequanzi Deposit in Eastern Tianshan. Earth Science, 43(9): 3036-3048. doi: 10.3799/dqkx.2018.150
    Citation: Zhang Wendong, Wu Xiangbin, Deng Xiaohua, Mao Qigui, Zhang Huiqiong, Yang Liya, Chen Xi, Xu Jun, Zhang Yan, Wang Yang, 2018. Fluid Inclusions Constraints on the Origin of the Xiaorequanzi Deposit in Eastern Tianshan. Earth Science, 43(9): 3036-3048. doi: 10.3799/dqkx.2018.150

    Fluid Inclusions Constraints on the Origin of the Xiaorequanzi Deposit in Eastern Tianshan

    doi: 10.3799/dqkx.2018.150
    • Received Date: 2018-01-13
    • Publish Date: 2018-09-15
    • The Xiaorequanzi copper deposit is one of the earliest copper deposits discovered in the eastern Tianshan orogen. However, the characters and evolution of ore-forming fluid and the metallogenic mechanism remain relatively unclear. The fluid inclusions from different mineralization stages were analyzed by microscopic temperature measurement and laser-Raman spectrum in this paper. The mineralization process of the Xiaorequanzi deposit can be divided into VMS, hydrothermal overprinting and supergene mineralization periods. Among them, the VMS period can be subdivided into the pyrite and chalcopyrite-sphalerite stages, whilst the hydrothermal overprinting period can be subdivided into the quartz-sulfide and carbonate stages. Two types of fluid inclusions were identified in VMS period. The aqueous inclusions yield homogenization temperatures of 234-392℃, with salinities of 3.5%-13.3% NaCleqv. The hydrothermal overprinting period contains aqueous inclusions yielding homogenization temperatures of 122-296℃, with salinities of 1.4%-12.1% NaCleqv. These microthermometric results show that the ore fluid system evolved from high temperature, middle-high salinity magmatic hydrothermal to low temperature, middle-low salinity seawater. Thus, the deposit could be classified as VMS metallogenic system which has suffered hydrothermal overprinting.

       

    • loading
    • Brown, P.E., Hagemann, S.G., 1995.MacFlinCor and Its Application to Fluids in Archean Lode-Gold Deposits.Geochimica et Cosmochimica Acta, 59(19):3943-3952. https://doi.org/10.1016/0016-7037(95)00254-w
      Chen, H., Ni, P., Wang, R.C., et al., 2015.A Combined Fluid Inclusion and S-Pb Isotope Study of the Neoproterozoic Pingshui Volcanogenic Massive Sulfide Cu-Zn Deposit, Southeast China.Ore Geology Reviews, 66:388-402. https://doi.org/10.1016/j.oregeorev.2014.11.002
      Chen, Y.J., Ni, P., Fan, H.R., et al., 2007.Diagnostic Fluid Inclusions of Different Types Hydrothermal Gold Deposits.Acta Petrologica Sinica, 23(9):2085-2108 (in Chinese with English abstract).
      Dang, Y., Chen, M.H., Mao, J.W., et al., 2014.Geochemistry of Ore-Forming Fluid of Gacun-Youre Ore District in Baiyu County, Sichuan Province.Acta Petrologica Sinica, 30(1):221-236 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201401017
      Deng, X.H., Wang, J.B., Pirajno, F., et al., 2016.Re-Os Dating of Chalcopyrite from Selected Mineral Deposits in the Kalatag District in the Eastern Tianshan Orogen, China.Ore Geology Reviews, 77:72-81. https://doi.org/10.1016/j.oregeorev.2016.01.014
      Doyle, M.G., Allen, R.L., 2003.Subsea-Floor Replacement in Volcanic-Hosted Massive Sulfide Deposits.Ore Geology Reviews, 23(3/4):183-222. https://doi.org/10.1016/s0169-1368(03)00035-0
      Driesner, T., Heinrich, C.A., 2007.The System H2O-NaCl.Part Ⅰ:Correlation Formulae for Phase Relations in Temperature-Pressure-Composition Space from 0 to 1 000℃, 0 to 5 000 bar, and 0 to 1 XNaCl.Geochimica et Cosmochimica Acta, 71(20):4880-4901. https://doi.org/10.1016/j.gca.2006.01.033
      Fan, H.R., Hu, F.F., Wilde, S.A., et al., 2011.The Qiyugou Gold-Bearing Breccia Pipes, Xiong'ershan Region, Central China:Fluid-Inclusion and Stable-Isotope Evidence for an Origin from Magmatic Fluids.International Geology Review, 53(1):25-45. https://doi.org/10.1080/00206810902875370
      Franklin, J.M., Gibson, H.L., Jonasson, I.R., et al., 2005.Volcanogenic Massive Sulfide Deposit.Economic Geology, 100th Anniversary Volume: 523-560.
      Galley, A.G., Hannington, M.D., Jonasson, I.R., 2007.Volcanogenic Massive Sulphide Deposits.In: Goodfellow, W.D., ed., Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods.Geological Association of Canada, Mineral Deposits Division, Special Publication, 5: 141-161.
      Hagemann, S.G., Lüders, V., 2003.P-T-X Conditions of Hydrothermal Fluids and Precipitation Mechanism of Stibnite-Gold Mineralization at the Wiluna Lode-Gold Deposits, Western Australia:Conventional and Infrared Microthermometric Constraints.Mineralium Deposita, 38(8):936-952. https://doi.org/10.1007/s00126-003-0351-6
      Hall, D.L., Sterner, S.M., Bodnar, R.J., 1988.Freezing Point Depression of NaCl-KCl-H2O Solutions.Economic Geology, 83(1):197-202. https://doi.org/10.2113/gsecongeo.83.1.197
      Hannington, M.D., de Ronde, C.E.J., Petersen, S., 2005.Seafloor Tectonics and Submarine Hydrothermal Systems.Economic Geology, 100th Anniversary Volume: 111-141.
      Hannington, M.D., Poulsen, K.H., Thompson, J.F.H., et al., 1999.Volcanogenic Gold in the Massive Sulfide Environment.In: Barrie, C.T., Hannington, M.D., eds., Volcanic-Associated Massive Sulfide Deposits: Processes and Examples in Modern and Ancient Settings.Reviews in Economic Geology, 8: 325-356.
      Hedenquist, J.W., Arribas, A., Reynolds, T.J., 1998.Evolution of an Intrusion-Centered Hydrothermal System; Far Southeast-Lepanto Porphyry and Epithermal Cu-Au Deposits, Philippines.Economic Geology, 93(4):373-404. https://doi.org/10.2113/gsecongeo.93.4.373
      Hou, Z.Q., Li, Y.Q., Zhang, Q.L., et al., 2003.End-Members and Mixing of Fluids in Submarine Hydrothermal System:Evidence from Fluid Inclusions in the Baiyinchang and Gacun VMS Deposits.Acta Petrologica Sinica, 19(2):221-234 (in Chinese with English abstract).
      Li, F.M., Wang, Z.S., Hou W.B., et al., 2002.Synthetic Prospecting Model Developed from Xiaorequanzi Copper Deposit in East Tianshan, Xinjiang.Xinjiang Geology, 20(1):38-43 (in Chinese with English abstract).
      Li, H.Q., Chen, F.W., 2002.Radioisotope Dating of Xiaorequanzi Copper-Zinc Deposit in Eastern Xinjiang and Its Implication to Mineralization Origin.Mineral Deposits, 21(S1):401-404 (in Chinese with English abstract).
      Liu, S.T., Lü, X.B., Cao, X.F., et al., 2011.Isotopic Geochemistry of the Xiaorequanzi Copper (Zinc) Deposit in Xinjiang and Its Significance.Geology and Prospecting, 47(4):624-632 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzykt201104009
      Liu, S.T., Lü, X.B., Cao, X.F., et al., 2012.A Study of Rare Earth and Trace Elements and Microstructure of Sulfide Minerals from the Xiaorequanzi Copper (Zinc) Deposit of Xinjiang.Acta Geoscientia Sinica, 33(2):197-208 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201202008
      Mao, Y.J., Qin, K.Z., Li, C.S., et al., 2015.A Modified Genetic Model for the Huangshandong Magmatic Sulfide Deposit in the Central Asian Orogenic Belt, Xinjiang, Western China.Mineralium Deposita, 50(1):65-82. https://doi.org/10.1007/s00126-014-0524-5
      Mernagh, T.P., Bastrakov, E.N., Zaw, K., et al., 2007.Comparison of Fluid Inclusion Data and Mineralization Processes for Australian Orogenic Gold and Intrusion-Related Gold Systems.Acta Petrologica Sinica, 23(1):21-32.
      Ohmoto, H., Skinner, B.J., 1985.The Kuroko and Related Volcanogenic Massive Sulfide Deposits.The Economic Geology Publishing Company, Michigan.
      Pirajno, F., 2009.Hydrothermal Processes and Mineral Systems.Springer, Berlin.
      Pirajno, F., 2013.The Geology and Tectonics Settings of China's Mineral Deposits.Springer, Berlin.
      Qin, K.Z., Fang, T.H., Wang, S.L., et al., 2002.Plate Tectonics Division, Evolution and Metallogenic Settings in Eastern Tianshan Mountains, NW-China.Xinjiang Geology, 20(4):302-308 (in Chinese with English abstract).
      Ramboz, C., Pichavant, M., Weisbrod, A., 1982.Fluid Immiscibility in Natural Processes:Use and Misuse of Fluid Inclusion Data.Chemical Geology, 37(1-2):29-48. https://doi.org/10.1016/0009-2541(82)90065-1
      Roedder, E., 1984.Fluid Inclusions.Reviews in Mineralogy, 12:473-484. http://d.old.wanfangdata.com.cn/Periodical/dqkx200802015
      Rui, Z.Y., Liu, Y.L., Wang, L.S., et al., 2002.The Eastern Tianshan Porphyry Copper Belt in Xinjiang and Its Tectonic Framework.Acta Geologica Sinica, 76(1):83-94 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200201011
      Schardt, C., Cooke, D.R., Gemmell, J.B., et al., 2001.Geochemical Modeling of the Zoned Footwall Alteration Pipe, Hellyer Volcanic-Hosted Massive Sulfide Deposit, Western Tasmania, Australia.Economic Geology, 96(5):1037-1054. https://doi.org/10.2113/gsecongeo.96.5.1037
      Shen, P., Pan, H.D., Zhou, T.F., et al., 2014.Petrography, Geochemistry and Geochronology of the Host Porphyries and Associated Alteration at the Tuwu Cu Deposit, NW China:A Case for Increased Depositional Efficiency by Reaction with Mafic Hostrock? Mineralium Deposita, 49(6):709-731. https://doi.org/10.1007/s00126-014-0517-4
      Tornos, F., 2006.Environment of Formation and Styles of Volcanogenic Massive Sulfides:The Iberian Pyrite Belt.Ore Geology Reviews, 28(3):259-307. https://doi.org/10.1016/j.oregeorev.2004.12.005
      Toscano, M., Sáez, R., Almodóvar, G., 1997.Hydrothermal Fluid Evolution during the Genesis of the Aznalcollar Massive Sulphides (Iberian Pyrite Belt):Fluid Inclusion Evidences.Geogaceta, 21:211-214.
      Ulrich, T., Golding, S.D., Kamber, B.S., et al., 2003.Different Mineralization Styles in a Volcanic-Hosted Ore Deposit:The Fluid and Isotopic Signatures of the Mt Morgan Au-Cu Deposit, Australia.Ore Geology Reviews, 22(1-2):61-90. https://doi.org/10.1016/s0169-1368(02)00109-9
      Urabe, T., Sato, T., 1978.Kuroko Deposits of the Kosaka Mine, Northeast Honshu, Japan; Products of Submarine Hot Springs on Miocene Sea Floor.Economic Geology, 73(2):161-179. https://doi.org/10.2113/gsecongeo.73.2.161
      Vanko, D.A., Milby, B.J., Heinzquith, S.W., 1991.Massive Sulfides with Fluid-Inclusion-Bearing Quartz from a Young Seamount on the East Pacific Rise.The Canadian Mineralogist, 29:453-460.
      Wang, D.H., Chen, Y.C., 2001.A Preliminary Study on the Metallogenic Series Type of Fe-Cu-Pb-Zn Ore Deposits Related to Submarine Volcanism and Its Origin.Mineral Deposits, 20(2):112-118 (in Chinese with English abstract).
      Wang, J., Sun, F.Y., Yu, L., et al., 2017.Fluid Inclusions and H-O-S-Pb Isotope Systematics of the Galonggema Cu Deposit in Yushu, Qinghai Province, China.Earth Science, 42(6):941-956 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.074
      Wang, J.B., Wang, Y.W., He, Z.J., 2006.Ore Deposits as a Guide to the Tectonic Evolution in the East Tianshan Mountains, NW China.Geology in China, 33(3):461-469 (in Chinese with English abstract).
      Wang, P., Zhu, Z.X., Zhao, T.Y., et al., 2011.Volcanic Rock Petrochemical Characteristics and Tectonic Significance of the Xiaorequanzi Formation, Queletage, Jueluotage Area of Xinjiang.Xinjiang Geology, 29(4):372-376 (in Chinese with English abstract).
      Wang, X., Gao, J., He, S., et al., 2017.Fluid Inclusion and Geochemistry Studies of Calcite Veins in Shizhu Synclinorium, Central China:Record of Origin of Fluids and Diagenetic Conditions.Journal of Earth Science, 28(2):315-332. https://doi.org/10.1007/s12583-016-0921-7
      Wang, Z.S., Lü, X.B., 2006.Genetic Analysis of Xiaorequanzi Copper-Deposit, Xinjiang.Geological Science and Technology Information, 25(3):68-72 (in Chinese with English abstract).
      Wen, C.Q., Xu, X.H., Mao, Y.S., 2002.A Study on Ore-Forming Process of the Xiaorequanzi Copper Deposit, Xinjiang.Journal of Mineralogy and Petrology, 22(3):29-32 (in Chinese with English abstract).
      Wilkinson, J.J., 2001.Fluid Inclusions in Hydrothermal Ore Deposits.Lithos, 55(1-4):229-272. https://doi.org/10.1016/s0024-4937(00)00047-5
      Xiao, B., Chen, H.Y., Hollings, P., et al., 2017.Magmatic Evolution of the Tuwu-Yandong Porphyry Cu Belt, NW China:Constraints from Geochronology, Geochemistry and Sr-Nd-Hf Isotopes.Gondwana Research, 43:74-91. https://doi.org/10.1016/j.gr.2015.09.003
      Xiao, W.J., Han, C.M., Yuan, C., et al., 2008.Middle Cambrian to Permian Subduction-Related Accretionary Orogenesis of Northern Xinjiang, NW China:Implications for the Tectonic Evolution of Central Asia.Journal of Asian Earth Sciences, 32(2-4):102-117. https://doi.org/10.1016/j.jseaes.2007.10.008
      Yang, K.H., Scott, S.D., 2002.Magmatic Degassing of Volatiles and Ore Metals into a Hydrothermal System on the Modern Sea Floor of the Eastern Manus Back-Arc Basin, Western Pacific.Economic Geology, 97(5):1079-1100. https://doi.org/10.2113/gsecongeo.97.5.1079
      Zaw, K., Gemmell, J.B., Large, R.R., et al., 1996.Evolution and Source of Ore Fluids in the Stringer System, Hellyer VHMS Deposit, Tasmania, Australia:Evidence from Fluid Inclusion Microthermometry and Geochemistry.Ore Geology Reviews, 10(3-6):251-278. https://doi.org/10.1016/0169-1368(95)00026-7
      Zeng, Z.G., Qin, Y.S., Zhai, S.K., 2003.He, Ne and Ar Isotope Compositions of Fluid Inclusions in Massive Sulfides from the Jade Hydrothermal Field, Okinawa Trough.Acta Oceanologica Sinica, 25(4):36-42 (in Chinese with English abstract).
      Zheng, Y., Zhang, L., Chen, Y.J., et al., 2013.Metamorphosed Pb-Zn-(Ag) Ores of the Keketale VMS Deposit, NW China:Evidence from Ore Textures, Fluid Inclusions, Geochronology and Pyrite Compositions.Ore Geology Reviews, 54:167-180. https://doi.org/10.1016/j.oregeorev.2013.03.009
      Zhu, Y.F., An, F., Feng, W.Y., et al., 2016.Geological Evolution and Huge Ore-Forming Belts in the Core Part of the Central Asian Metallogenic Region.Journal of Earth Science, 27(3):491-506. https://doi.org/10.1007/s12583-016-0673-7
      陈衍景, 倪培, 范宏瑞, 等, 2007.不同类型热液金矿系统的流体包裹体特征.岩石学报, 23(9):2085-2108. doi: 10.3969/j.issn.1000-0569.2007.09.009
      党院, 陈懋弘, 毛景文, 等, 2014.四川省白玉县呷村-有热矿区成矿流体地球化学.岩石学报, 30(1):221-236. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201401017
      侯增谦, 李荫清, 张绮玲, 等, 2003.海底热水成矿系统中的流体端员与混合过程:来自白银厂和呷村VMS矿床的流体包裹体证据.岩石学报, 19(2):221-234. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200302003
      李凤鸣, 王宗社, 侯文斌, 等, 2002.东天山小热泉子铜矿床综合找矿模型的建立.新疆地质, 20(1):38-43. doi: 10.3969/j.issn.1000-8845.2002.01.009
      李华芹, 陈富文, 2002.东疆小热泉子铜锌矿床成岩成矿作用年代学及矿床成因讨论.矿床地质, 21(S1):401-404. http://d.old.wanfangdata.com.cn/Conference/4400430
      刘申态, 吕新彪, 曹晓峰, 等, 2011.新疆小热泉子铜(锌)矿床同位素地球化学研究及其意义.地质与勘探, 47(4):624-632. http://d.old.wanfangdata.com.cn/Periodical/dzykt201104009
      刘申态, 吕新彪, 曹晓峰, 等, 2012.新疆小热泉子铜(锌)矿床硫化物显微结构及稀土、微量元素研究.地球学报, 33(2):197-208. http://d.old.wanfangdata.com.cn/Periodical/dqxb201202008
      秦克章, 方同辉, 王书来, 等, 2002.东天山板块构造分区、演化与成矿地质背景研究.新疆地质, 20(4):302-308. doi: 10.3969/j.issn.1000-8845.2002.04.002
      芮宗瑶, 刘玉琳, 王龙生, 等, 2002.新疆东天山斑岩型铜矿带及其大地构造格局.地质学报, 76(1):83-94. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200201011
      王登红, 陈毓川, 2001.与海相火山作用有关的铁-铜-铅-锌矿产成矿系列类型及成因初探.矿床地质, 20(2):112-118. doi: 10.3969/j.issn.0258-7106.2001.02.003
      王键, 孙丰月, 禹禄, 等, 2017.青海玉树尕龙格玛VMS型矿床流体包裹体及H-O-S-Pb同位素特征.地球科学, 42(6):941-956 http://www.earth-science.net/WebPage/Article.aspx?id=3589
      王京彬, 王玉往, 何志军, 2006.东天山大地构造演化的成矿示踪.中国地质, 33(3):461-469. doi: 10.3969/j.issn.1000-3657.2006.03.002
      王平, 朱志新, 赵同阳, 等, 2011.新疆觉罗塔格地区却勒塔格一带小热泉子组火山岩地球化学特征及构造意义.新疆地质, 29(4):372-376. doi: 10.3969/j.issn.1000-8845.2011.04.003
      王宗社, 吕新彪, 2006.新疆小热泉子铜矿床成因.地质科技情报, 25(3):68-72. doi: 10.3969/j.issn.1000-7849.2006.03.012
      温春齐, 徐新煌, 茅燕石, 2002.小热泉子铜矿床成矿过程分析.矿物岩石, 22(3):29-32. doi: 10.3969/j.issn.1001-6872.2002.03.007
      曾志刚, 秦蕴珊, 翟世奎, 2003.冲绳海槽Jade热液区块状硫化物中流体包裹体的氦、氖、氨同位素组成.海洋学报, 25(4):36-42. doi: 10.3321/j.issn:0253-4193.2003.04.005
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(3)

      Article views (5664) PDF downloads(44) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return