• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 43 Issue 8
    Aug.  2018
    Turn off MathJax
    Article Contents
    Li Yingxu, Li Guangming, Xie Yuling, Zhang Li, Liu Baoshun, Li Lamei, 2018. Properties and Evolution Path of Ore-Forming Fluid in Qiagong Polymetallic Deposit of Middle Gangdese in Tibet, China. Earth Science, 43(8): 2684-2700. doi: 10.3799/dqkx.2018.170
    Citation: Li Yingxu, Li Guangming, Xie Yuling, Zhang Li, Liu Baoshun, Li Lamei, 2018. Properties and Evolution Path of Ore-Forming Fluid in Qiagong Polymetallic Deposit of Middle Gangdese in Tibet, China. Earth Science, 43(8): 2684-2700. doi: 10.3799/dqkx.2018.170

    Properties and Evolution Path of Ore-Forming Fluid in Qiagong Polymetallic Deposit of Middle Gangdese in Tibet, China

    doi: 10.3799/dqkx.2018.170
    • Received Date: 2018-03-06
    • Publish Date: 2018-08-15
    • The current study of the deposits on the Middle Gangdese metallogenic belt is mainly related to geological features, metallogenic epochs and the origin of ore-forming rock masses.However, there are less detailed reports on the formation process, especially the evolution of ore-forming fluids.Qiagong polymetallic deposit located in the belt is genetically related to monzogranite porphyry formed at early India-Asia continental collision.The mineralization styles include skarn type Fe(-Cu), distal vein type Pb-Zn-Ag(-Cu) and carbonate replacement type Pb-Zn-Ag.Based on field observation and petrographic results the ore-forming process in this deposit can be divided into at least six stages including complexed garnet-magnetite stage (Ⅰ), epidote-magnetite stage (Ⅱ), quartz-hematite stage (Ⅲ), fluorite-chalcopyrite stage (Ⅳ), calcite-galena-sphalerite stage (Ⅴ) and calcite-quartz stage (Ⅵ).Petrographic, microthermometric and laser Raman microprobe results of fluid inclusions in quartz, garnet, epidote, calcite and fluorite from these six stages demonstrate that the pressure, temperature, density and salinity of the ore forming fluid decrease from early to later stage, and the fluid system change from early H2O-NaCl (Ⅰ-Ⅱ) via H2O-NaCl-FeCl2-3±MgCl2(Ⅲ), H2O-CO2-NaCl (Ⅳ) to late H2O-NaCl-CaCl2(Ⅴ & Ⅵ).The deposition of Cu in Qiagong was triggered by the boiling of the ore-forming fluid of H2O-CO2-NaCl system from stage Ⅳ.The deposition of Pb and Zn might be ascribed to the temperature decrease, or it might also be the result of mineralization superposition.

       

    • loading
    • Becker, S.P., Fall, A., Bodnar, R.J., 2008.Synthetic Fluid Inclusions:ⅩⅦ.PVTX Properties of High Salinity H2O-NaCl Solutions(>30% NaCl):Application to Fluid Inclusions that Homogenize by Halite Disappearance from Porphyry Copper and Other Hydrothermal Ore Deposits.Economic Geology.103(3):539-554. https://doi.org/10.2113/gsecongeo.103.3.539
      Bi, F.K., Xiao, W.X., Yan, T.S., 2006.Location-Vacancy of Metallogenic Series and Its Application to Metallogenic Prognosis.Mineral Deposits, 25(6):735-742 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=7e5319c5bd38000cc11f69e7aa61e86b&encoded=0&v=paper_preview&mkt=zh-cn
      Bodnar, R.J., 1983.A Method of Calculating Fluid Inclusion Volumes Based on Vapor Bubble Diameters and PVTX Properties of Inclusion Fluids.Economic Geology, 78(3):535-542. https://doi.org/10.2113/gsecongeo.78.3.535
      Bodnar, R. J., Vityk, M. O., 1994. Interpretation of Microthermomertric Data for H2O-NaCl Fluid Inclusions. In: de Vivo, B., Frezzotti, M. L., eds., Fluid Inclusions in Minerals: Methods and Application. Verginia Tech, Blacksberg, 117-130.
      Bowers, T.S., Helgeson, H.C., 1983a.Calculation of the Thermodynamic and Geochemical Consequences of Nonideal Mixing in the System H2O-CO2-NaCl on Phase Relations in Geologic Systems:Equation of State for H2O-CO2-NaCl Fluids at High Pressures and Temperatures.Geochimica et Cosmochimica Acta, 47(7):1247-1275. https://doi.org/10.1016/0016-7037(83)90066-2
      Bowers, T.S., Helgeson, H.C., 1983b.Calculation of the Thermodynamic and Geochemical Consequences of Nonideal Mixing in the System H2O-CO2-NaCl on Phase Relations in Geologic Systems:Metamorphic Equilibria at High Pressures and Temperatures.American Mineralogist, 68(11-12):1059-1075.
      Brown, P.E., Lamb, W.M., 1989.P-V-T Properties of Fluids in the System H2O±CO2±NaCl:New Graphical Presentations and Implications for Fluid Inclusion Studies.Geochimica et Cosmochimica Acta, 53(6):1209-1221. https://doi.org/10.1016/0016-7037(89)90057-4
      Canet, C., Franco, S.I., Prol-Ledesma, R.M., et al., 2011a.A Model of Boiling for Fluid Inclusion Studies:Application to the Bolaños Ag-Au-Pb-Zn Epithermal Deposit, Western Mexico.Journal of Geochemical Exploration, 110(2):118-125. https://doi.org/10.1016/j.gexplo.2011.04.005
      Canet, C., González-Partida, E., Camprubí, A., et al., 2011b.The Zn-Pb-Ag Skarns of Zacatepec, Northeastern Oaxaca, Mexico:A Study of Mineral Assemblages and Ore-Forming Fluids.Ore Geology Reviews, 39(4):277-290. https://doi.org/10.1016/j.oregeorev.2011.03.007
      Chen, Y.C., 2011.A Tentative Discussion on the Breakthrough of Ore Prospecting in China.Mineral Deposits, 30(5):767-772 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=79f332251d69c0ee487db6888d6620a4&encoded=0&v=paper_preview&mkt=zh-cn
      Craig, J.R., Barton, P.B., 1973.Thermochemical Approximations for Sulfosalts.Economic Geology, 68(4):493-506. https://doi.org/10.2113/gsecongeo.68.4.493
      Cruz-Pérez, M.A., Canet, C., Franco, S.I., et al., 2016.Boiling and Depth Calculations in Active and Fossil Hydrothermal Systems:A Comparative Approach Based on Fluid Inclusion Case Studies from Mexico.Ore Geology Reviews, 72:603-611. https://doi.org/10.1016/j.oregeorev.2015.08.016
      Diamond, L.W., 2001.Review of the Systematics of CO2-H2O Fluid Inclusions.Lithos, 55(1-4):69-99. https://doi.org/10.1016/s0024-4937(00)00039-6
      Ding, S., Chen, Y.C., Tang, J.X., et al., 2017.Relationship between Linzizong Volcanic Rocks and Mineralization:A Case Study of Sinongduo Epithermal Ag-Pb-Zn deposit.Mineral Deposits, 36(5):1074-1092 (in Chinese with English abstract).
      Duan, Z.M., Li, G.M., Li, Y.X., et al., 2014.Geochronology and Geochemical Characteristics of Ore-Bearing Porphyry in Longgen Lead-Zinc Deposit of Middle-Gangdese Metallogenic Belt, Tibet.Mineral Deposits, 33(3):625-638 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=bccb9e8d477865ec856525ef7afcf918&encoded=0&v=paper_preview&mkt=zh-cn
      Duan, Z.M., Li, G.M., Wang, B.D., et al., 2015.Geochronology and Its Geological Significance of the Ore-Bearing Porphyry in Chagele Lead-Zinc Deposit in Middle-Gangdese Metallogenic Belt, Tibet.Journal of Jilin University(Earth Science Edition), 45(6):1667-1690 (in Chinese with English abstract).
      Fu, Q., Yang, Z.S., Zheng, Y.C., et al., 2014.Ar-Ar Age of Phlogopite from the Longmala Copper-Iron-Lead-Zinc Deposit in Tibet and Its Geodynamic Significance.Acta Petrologica et Mineralogica, 33(2):283-293 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201402007.htm
      Fu, Q., Zheng, Y.C., Huang, K.X., 2012.Sulfur and Lead Isotopic Compositions of Longmala Polymetallic Deposit, Tibet and Its Geological Significance.Nonferrous Metal(Mining Section), 64(4):26-30 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKU201204009.htm
      Gao, S.B., Zheng, Y.Y., Tain, L.M., et al., 2012.Geochronology of Magmatic Intrusions and Mineralization of Chagele Copper-Lead-Zinc Deposit in Tibet and Its Implications.Earth Science, 37(3):507-514 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2012.057
      Gao, Y.M., Chen, Y.C., Tang, J.X., et al., 2009.SHRIMP U-Pb Dating of Zircon from Quartz Porphyry in the Yaguila Pb-Zn-Mo Deposit, Gongbujiangda County, Tibet and Its Geological Implication.Acta Geologica Sinica, 83(10):1436-1444 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=590090cff781fe2c67c68e5c7dc416b4&encoded=0&v=paper_preview&mkt=zh-cn
      Gao, Y.M., Chen, Y.C., Tang, J.X., et al., 2011a.Re-Os Dating of Molybdenite from the Yaguila Porphyry Molybdenum Deposit in Gongbo'gyamda Area, Tibet, and Its Geological Significance.Geological Bulletin of China, 30(7):1027-1036 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201107003.htm
      Gao, Y.M., Chen, Y.C., Wang, C.H., et al., 2011b.Zircon Hf Isotopic Characteristics and Constraints on Petrogenesis of Mesozoic-Cenozoic Magmatic Rocks in Nyainqentanglha Region, Tibet.Mineral Deposits, 30(2):279-291 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=acb6d0f983d30bad45ec3ba1989d00b4&encoded=0&v=paper_preview&mkt=zh-cn
      Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., et al., 1998.Orogenic Gold Deposits:A Proposed Classification in the Context of Their Crustal Distribution and Relationship to Other Gold Deposit Types.Ore Geology Reviews, 13(1-5):7-27. https://doi.org/10.1016/S0169-1368(97)00012-7
      Hall, D.L., Sterner, S.M., Bodnar, R.J., 1988.Freezing Point Depression of NaCl-KCl-H2O Solutions.Economic Geology, 83(1):197-202. https://doi.org/10.2113/gsecongeo.83.1.197
      Heijlen, W., Muchez, P., Banks, D.A., 2001.Origin and Evolution of High-Salinity, Zn-Pb Mineralising Fluids in the Variscides of Belgium.Mineralium Deposita, 36(2):165-176. https://doi.org/10.1007/s001260050296
      Hou, Z.Q., Yang, Z.S., Xu, W.Y., et al., 2006.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅰ.Mineralizationin Main Collisional Orogenic Setting.Mineral Deposits, 25(4):337-358 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200604000.htm
      Huang, H.X., Li, G.M., Zeng, Q.G., et al., 2012.Geochronology of the Chagele Pb-Zn Deposit in Tibet and Its Significance.Geology in China, 39(3):750-759 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=f0f939552a247c031d3bf34a69e9f18d&encoded=0&v=paper_preview&mkt=zh-cn
      Huang, K.X., Zheng, Y.C., Zhang, S., et al., 2012.LA-ICP-MS Zircon U-Pb Dating of Two Types of Porphyry in the Yaguila Mining Area, Tibet.Acta Petrologica et Mineralogica, 31(3):348-360 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=094b91c23b0f268ab111b11b84b872ed&encoded=0&v=paper_preview&mkt=zh-cn
      Jankovic, S., 1990.Types of Copper Deposits Related to Volcanic Environment in the Bor District, Yugoslavia.Geologische Rundschau, 79(2):467-478. https://doi.org/10.1007/bf01830639
      Ji, X.H., Meng, X.J., Yang, Z.S., et al, 2014.The Ar-Ar Geochronology of Sericite from the Cryptoexplosive Breccia Type Pb-Zn Deposit in Narusongduo, Tibet and Its geological Significance.Geology and Exploration, 50(2):281-290 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzykt201402008
      Ji, X.H., Yang, Z.S., Yu, Y.S., et al., 2012.Formation Mechanism of Magmatic Rocks in Narusongduo Lead-Zinc Deposit of Tibet:Evidence from Magmatic Zircon.Mineral Deposits, 31(4):758-774 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=f8faf1b93f79fecd326c6a2217499028&encoded=0&v=paper_preview&mkt=zh-cn
      Jiang, S.H., Nie, F.J., Hu, P., et al., 2009.Mayum:An Orogenic Gold Deposit in Tibet, China.Ore Geology Reviews, 36(1-3):160-173. https://doi.org/10.1016/j.oregeorev.2009.03.006
      Ke, X.Z., Long, W.G., Zhou, D., et al., 2017.Metallogenesis of the Main Collisional Period in Mid-Western Gangdise:Zircon U-Pb Geochronology of the Granite Porphyry in Dexin Deposit, Tibet.Geological Bulletin of China, 36(5):772-779 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201705009.htm
      Leach, D.L., Marsh, E., Emsbo, P., et al., 2004.Nature of Hydrothermal Fluids at the Shale-Hosted Red Dog Zn-Pb-Ag Deposits, Brooks Range, Alaska.Economic Geology, 99(7):1449-1480. https://doi.org/10.2113/gsecongeo.99.7.1449
      Li, F.Q., Gao, M., Tang, W.Q., et al., 2010.U-Pb Zircon LA-ICP-MS Age of the Yaguila Molybdenum-Bearing Intrusion in Tibet and Its Geological Significance.Geology in China, 37(6):1566-1574 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=13f538976a68af7d2cb1c2d67195114b&encoded=0&v=paper_preview&mkt=zh-cn
      Li, J.F., Wang, K.Y., Lu, J.S., et al., 2015.Ore-Forming Fluid Geochemical Characteristics and Genesis of Pb-Zn Deposit in Hongling, Inner Mongolia.Earth Science, 40(6):995-1005 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.083
      Li, Y.X., Xie, Y.L., Chen, W., et al., 2011.U-Pb Age and Geochemical Characteristics of Zircon in Monzogranite Porphyry from Qiagong Deposit, Tibet, and Geological Implication.Acta Petrologica Sinica, 27(7):2023-2033 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107011
      Liu, B., Dong, S.L., Li, G.M., et al., 2010.Geochemistry, Age and Their Geological Significance of the Pluton in the Sinongduo Lead-Zinc Mine, Tibet.Mineral Deposits, 29(S1):472-473 (in Chinese).
      Liu, Y.C., Ji, X.H., Hou, Z.Q., et al., 2015.The Establishment of an Independent Pb-Zn Mineralization System Related to Magmatism:A Case Study of the Narusongduo Pb-Zn Deposit in Tibet.Acta Petrologica et Mineralogica, 34(4):539-556 (in Chinese with English abstract).
      Liu, Z.Q., Li, X.Z, ,Ye, Q.T., et al., 1993.Dividing of Tectono-Magmatic Belts and Distribution of the Ore Depositsin Sanjiang Region.Geological Publishing House, Beijing (in Chinese).
      Ma, W., Yang, Z.S., Hou, Z.Q., et al., 2015.Zircon U-Pb Dating and Geochemical Characteristics of Metallogenetic Rock from the Lietinggang-Leqingla Fe-Cu-Pb-Zn Deposit in Tibet.Acta Geologica Sinica, 89(9):1655-1672 (in Chinese with English abstract).
      Moncada, D., Baker, D., Bodnar, R.J., 2017.Mineralogical, Petrographic and Fluid Inclusion Evidence for the Link between Boiling and Epithermal Ag-Au Mineralization in the La Luz Area, Guanajuato Mining District, México.Ore Geology Reviews, 89:143-170. https://doi.org/10.1016/j.oregeorev.2017.05.024
      Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006.Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution.Acta Petrologica Sinica, 22(3):521-533 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=5d9c283025ecbe62858843bc2764200b&encoded=0&v=paper_preview&mkt=zh-cn
      Roedder, E., Bodnar, R.J., 1980.Geologic Pressure Determinations from Fluid Inclusion Studies.Annual Review of Earth & Planetary Sciences, 8:263-301. https://doi.org/10.1146/annurev.ea.08.050180.001403
      Sibson, R.H., 2001.Seismogenic Framework for Hydrothermal Transport and Ore Deposition.Reviews in Economic Geology, 14:25-50. https://doi.org/10.5382/Rev.14.02
      Sun, X.M., Wei, H.X., Zhai, W., et al., 2016.Fluid Inclusion Geochemistry and Ar-Ar Geochronology of the Cenozoic Bangbu Orogenic Gold Deposit, Southern Tibet, China.Ore Geology Reviews, 74:196-210. https://doi.org/10.1016/j.oregeorev.2015.11.021
      Tang, J.X., Ding, S., Meng, Z., et al., 2016.The First Discovery of the Low Sulfidation Epithermal Deposit in Linzizong Volcanics, Tibet:A Case Study of the Sinongduo Ag Polymetallic Deposit.Acta Geoscientica Sinica, 37(4):461-470 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQXB201604010.htm
      Tang, Y.W., Li, X.F., Zhang, X.Q., et al., 2015.Some New Data on the Genesis of the Linghou Cu-Pb-Zn Polymetallic Deposit-Based on the Study of Fluid Inclusions and C-H-O-S-Pb Isotopes.Ore Geology Reviews, 71:248-262. https://doi.org/10.1016/j.oregeorev.2015.06.005
      Thiery, R., Vidal, J., Dubessy, J., 1994.Phase Equilibria Modelling Applied to Fluid Inclusions:Liquid-Vapour Equilibria and Calculation of the Molar Volume in the CO2-CH4-N2 System.Geochimica et Cosmochimica Acta, 58(3):1073-1082. https://doi.org/10.1016/0016-7037(94)90573-8
      Wang, B.D., Guo, L., Wang, L.Q., et al., 2012.Geochronology and Petrogenesis of the Ore-Bearing Pluton in Chagele Deposit in Middle of the Gangdese Metallogenic Belt.Acta Petrologica Sinica, 28(5):1647-1662 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201205025
      Wang, J., Sun, F.Y., Yu, L., et al., 2017.Fluid Inclusions and H-O-S-Pb Isotope Systematics of the Galonggema Cu Deposit in Yushu, Qinghai Province, China.Earth Science, 42(6):941-956 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.074
      Xie, Y.L., Li, Y.X., Chang, Z.S., et al., 2009.Magmatic Evolution and Characteristics of Magmatic Fluid in the Qiagong Porphyry System.Acta Geologica Sinica, 83(12):1869-1886 (in Chinese with English abstract).
      Xiong, S.F., Yao, S.Z., Gong, Y.J., et al., 2016.Ore-Forming Fluid and Thermochemical Sulfate Reduction in the Wusihe Lead-Zinc Deposit, Sichuan Province, China.Earth Science, 41(1):105-120 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.008
      Yang, Y., Duo, J., De, X.Y.Z., et al., 2015.Zircon U-Pb Dating and Hf Isotopic Composition of Intrusions in the Lietinggang Iron Polymetallic Deposit in Tibet and Their Geological Significance.Acta Petrologica et Mineralogica, 34(3):281-294 (in Chinese with English abstract).
      Yang, Y., Duo, J., Liu, H.F., et al., 2014.Re-Os Dating of Molybdenite from the Lietinggang Iron Polymetallic Deposit of Tibetand Its Geological Significance.Geology in China, 41(5):1554-1564 (in Chinese with English abstract).
      Yang, Y., Luo, T.Y., Huang, Z.L., et al., 2010.Sulfur and Lead Isotope Compositions of the Narusongduo Silver Zinc-Lead Deposit in Tibet:Implications for the Sources of Plutons and Metals in the Deposit.Acta Mineralogica Sinica, 30(3):311-318 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwxb201003006
      Yang, Z.M., Hou, Z.Q., Song, Y.C., et al., 2008.Qulong Superlarge Porphyry Cu Deposit in Tibet:Geology, Alteration and Mineralization.Mineral Deposits, 27(3):279-318 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=378724a433459abc34b4ba63cd8bd134&encoded=0&v=paper_preview&mkt=zh-cn
      Zhou, M.L., Zhou, X.K., Lu, S.Y., et al., 2017.Ar-Ar age of Muscovite from the Lietinggang-Leqingla Fe-Cu-Pb-Zn Deposit in Tibet and Its Geological Significance.Acta Petrologica et Mineralogica, 36(2):241-258 (in Chinese with English abstract).
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth.Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005
      毕伏科, 肖文暹, 阎同生, 2006.成矿系列的缺位问题及其在成矿预测中的应用.矿床地质, 25(6):735-742. doi: 10.3969/j.issn.0258-7106.2006.06.010
      陈毓川, 2011.实现找矿突破的探索.矿床地质, 30(5):767-772. doi: 10.3969/j.issn.0258-7106.2011.05.001
      丁帅, 陈毓川, 唐菊兴, 等, 2017.林子宗群火山岩与成矿关系:以斯弄多浅成低温热液型矿床为例.矿床地质, 36(5):1074-1092. http://d.old.wanfangdata.com.cn/Periodical/kcdz201705004
      段志明, 李光明, 李应栩, 等, 2014.中冈底斯成矿带龙根铅锌矿床含矿斑岩年代学与地球化学特征.矿床地质, 33(3):625-638. doi: 10.3969/j.issn.0258-7106.2014.03.012
      段志明, 李光明, 王保弟, 等, 2015.西藏中冈底斯成矿带查个勒铅锌矿床含矿斑岩年代学及其地质意义.吉林大学学报(地球科学版), 45(6):1667-1690. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201506011
      付强, 杨竹森, 郑远川, 等, 2014.西藏龙马拉Cu-Fe-Pb-Zn多金属矿床金云母Ar-Ar定年及其地球动力学意义.岩石矿物学杂志, 33(2):283-293. doi: 10.3969/j.issn.1000-6524.2014.02.007
      付强, 郑远川, 黄克贤, 2012.西藏龙马拉多金属矿床硫、铅同位素组成及其地质意义.有色金属(矿山部分), 64(4):26-30. doi: 10.3969/j.issn.1671-4172.2012.04.008
      高顺宝, 郑有业, 田立明, 等, 2012.西藏查个勒铜铅锌矿成岩成矿时代及意义.地球科学, 37(3):507-514. https://doi.org/10.3799/dqkx.2012.057
      高一鸣, 陈毓川, 唐菊兴, 等, 2009.西藏工布江达县亚贵拉铅锌钼多金属矿床石英斑岩锆石SHRIMP定年及其地质意义.地质学报, 83(10):1436-1444. doi: 10.3321/j.issn:0001-5717.2009.10.008
      高一鸣, 陈毓川, 唐菊兴, 等, 2011a.西藏工布江达地区亚贵拉铅锌钼矿床辉钼矿Re-Os测年及其地质意义.地质通报, 30(7):1027-1036. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201107004
      高一鸣, 陈毓川, 王成辉, 等, 2011b.亚贵拉-沙让-洞中拉矿集区中新生代岩浆岩Hf同位素特征与岩浆源区示踪.矿床地质, 30(2):279-291. http://d.old.wanfangdata.com.cn/Periodical/kcdz201102009
      侯增谦, 杨竹森, 徐文艺, 等, 2006.青藏高原碰撞造山带:I.主碰撞造山成矿作用.矿床地质, 25(4):337-358. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001
      黄瀚霄, 李光明, 曾庆高, 等, 2012.西藏查个勒铅锌矿床成矿时代研究及地质意义.中国地质, 39(3):750-759. doi: 10.3969/j.issn.1000-3657.2012.03.016
      黄克贤, 郑远川, 张松, 等, 2012.西藏亚贵拉矿区两期岩体LA-ICP-MS锆石U-Pb定年及地质意义.岩石矿物学杂志, 31(3):348-360. doi: 10.3969/j.issn.1000-6524.2012.03.005
      纪现华, 孟祥金, 杨竹森, 等, 2014.西藏纳如松多隐爆角砾岩型铅锌矿床绢云母Ar-Ar定年及其地质意义.地质与勘探, 50(2):281-290. http://d.old.wanfangdata.com.cn/Periodical/dzykt201402008
      纪现华, 杨竹森, 于玉帅, 等, 2012.西藏纳如松多铅锌矿床成矿岩体形成机制:岩浆锆石证据.矿床地质, 31(4):758-774. doi: 10.3969/j.issn.0258-7106.2012.04.008
      柯贤忠, 龙文国, 周岱, 等, 2017.西藏冈底斯中西段主碰撞期成矿事件-德新矿区花岗斑岩锆石U-Pb年龄证据.地质通报, 36(5):772-779. doi: 10.3969/j.issn.1671-2552.2017.05.009
      李奋其, 高明, 唐文清, 等, 2010.西藏亚贵拉含钼岩体锆石LA-ICP-MS年龄和地质意义.中国地质37(6):1566-1574. doi: 10.3969/j.issn.1000-3657.2010.06.003
      李剑锋, 王可勇, 陆继胜, 等, 2015.内蒙古红岭铅锌矿床成矿流体地球化学特征及矿床成因.地球科学, 40(6):995-1005. https://doi.org/10.3799/dqkx.2015.083
      李应栩, 谢玉玲, 陈伟, 等, 2011.西藏恰功铁矿二长花岗斑岩锆石的U-Pb年代学与地球化学特征及意义.岩石学报, 27(7):2023-2033. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107011
      刘波, 董随亮, 李光明, 等, 2010.西藏斯弄多铅锌矿岩体地球化学特征及年龄地质意义.矿床地质, 29(S1):472-473. http://d.old.wanfangdata.com.cn/Conference/7413293
      刘增乾, 李兴振, 叶庆同, 等, 1993.三江地区构造岩浆带的划分与矿产分布规律.北京:地质出版社.
      刘英超, 纪现华, 侯增谦, 等, 2015.一个与岩浆作用有关的独立铅锌成矿系统的建立——以西藏纳如松多铅锌矿床为例.岩石矿物学杂志, 34(4):539-556. doi: 10.3969/j.issn.1000-6524.2015.04.008
      马旺, 杨竹森, 侯增谦, 等, 2015.西藏列廷冈-勒青拉Fe-Cu-Pb-Zn矿区成矿岩体锆石U-Pb年代学与岩石地球化学特征.地质学报, 89(9):1655-1672. doi: 10.3969/j.issn.0001-5717.2015.09.009
      潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001
      唐菊兴, 丁帅, 孟展, 等, 2016.西藏林子宗群火山岩中首次发现低硫化型浅成低温热液型矿床——以斯弄多银多金属矿为例.地球学报, 37(4):461-470. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DQXB201604010&dbname=CJFD&dbcode=CJFQ
      王保弟, 郭琳, 王立全, 等, 2012.中冈底斯成矿带查个勒矿床含矿岩体的年代学及成因.岩石学报, 28(5):1647-1662. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201205025
      王键, 孙丰月, 禹禄, 等, 2017.青海玉树尕龙格玛VMS型矿床流体包裹体及H-O-S-Pb同位素特征.地球科学, 42(6):941-956. https://doi.org/10.3799/dqkx.2017.074
      谢玉玲, 李应栩, Chang, Z.S., 等, 2009.西藏恰功铁矿岩浆演化序列及斑岩出溶流体特征.地质学报, 83(12):1869-1886. doi: 10.3321/j.issn:0001-5717.2009.12.006
      熊索菲, 姚书振, 宫勇军, 等, 2016.四川乌斯河铅锌矿床成矿流体特征及TSR作用初探.地球科学, 41(1):105-120. https://doi.org/10.3799/dqkx.2016.008
      杨毅, 多吉, 德西央宗, 等, 2015.西藏列廷冈铁多金属矿侵入岩锆石U-Pb定年、Hf同位素组成及其地质意义.岩石矿物学杂志, 34(3):281-294. http://d.old.wanfangdata.com.cn/Periodical/yskwxzz201503002
      杨毅, 多吉, 刘鸿飞, 等, 2014.西藏列廷冈铁多金属矿床辉钼矿Re-Os定年及其地质意义.中国地质, 41(5):1554-1564. doi: 10.3969/j.issn.1000-3657.2014.05.012
      杨勇, 罗泰义, 黄智龙, 等, 2010.西藏纳如松多银铅矿S、Pb同位素组成:对成矿物质来源的指示.矿物学报, 30(3):311-318. http://d.old.wanfangdata.com.cn/Periodical/kwxb201003006
      杨志明, 侯增谦, 宋玉财, 等, 2008.西藏驱龙超大型斑岩铜矿床:地质、蚀变与成矿.矿床地质, 27(3):279-318. doi: 10.3969/j.issn.0258-7106.2008.03.002
      周梦林, 周向科, 卢世银, 等, 2017.西藏列廷冈-勒青拉矽卡岩型Fe-Cu-Pb-Zn多金属矿床白云母40Ar-39Ar年龄及其地质意义.岩石矿物学杂志, 36(2):241-258. doi: 10.3969/j.issn.1000-6524.2017.02.009
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(1)

      Article views (4681) PDF downloads(42) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return