• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 43 Issue 11
    Nov.  2018
    Turn off MathJax
    Article Contents
    Pan Feng, Guo Zhanrong, Liu Huatai, Wang Bo, Li Zhiwei, Zhuang Zhenjie, 2018. High-Resolution Distribution and Biogeochemical Behavior of Phosphorus and Iron at Sediment-Water Interface of Tidal Flat. Earth Science, 43(11): 4109-4119. doi: 10.3799/dqkx.2018.177
    Citation: Pan Feng, Guo Zhanrong, Liu Huatai, Wang Bo, Li Zhiwei, Zhuang Zhenjie, 2018. High-Resolution Distribution and Biogeochemical Behavior of Phosphorus and Iron at Sediment-Water Interface of Tidal Flat. Earth Science, 43(11): 4109-4119. doi: 10.3799/dqkx.2018.177

    High-Resolution Distribution and Biogeochemical Behavior of Phosphorus and Iron at Sediment-Water Interface of Tidal Flat

    doi: 10.3799/dqkx.2018.177
    • Received Date: 2018-03-19
    • Publish Date: 2018-11-15
    • To find out distribution and coupling pattern of iron and phosphorus, as well as impact on phosphorus release in microenvironment of intertidal region. with the help of diffusive gradients in thin films technique (ZrO-Chelex DGT), we obtained in-situ high-resolution DRP and Fe2+ concentrations in porewater profiles of mangrove tidal flat in Jiulong River estuary, as well as the corresponding sediment properties in this study. The results show:(1) In surface porewater, the remarkable positive correlation between DRP and Fe2+ verified the coupling relationship of these two elements and the crucial effects of sediment iron (Ⅲ) (oxyhydr) oxides on the absorption/desorption of phosphorus; (2) in deep anoxic porewater, on account of sediment heterogeneity and absorption by mangrove plants, DRP concentrations presented obvious fluctuations compared with Fe2+; (3) the molecular diffusion flux was estimated ranging from 0.000 64 to 0.006 00 μg·cm-2·d-1 based on DRP concentrations gradient in surface porewater, which are much lower than results of general lake research. The main reason is P-Fe coupling in this iron-rich tidal flat sediment with deep oxidation zone which effectively restrains phosphorus release.

       

    • loading
    • Babu, K.N., Ouseph, P.P., Padmalal, D., 2000.Interstitial Water-Sediment Geochemistry of N, P and Fe and Its Response to Overlying Waters of Tropical Estuaries:A Case from the Southwest Coast of India.Environmental Geology, 39(6):633-640. https://doi.org/10.1007/s002540050475
      Bao, S.D., 2000.Soil Agricultural Chemistry Analysis (The Third Edition).China Agriculture Press, Beijing, 21 (in Chinese).
      Cai, P.H., Shi, X.M., Moore, W.S., et al., 2014.224Ra:228Th Disequilibrium in Coastal Sediments:Implications for Solute Transfer across the Sediment-Water Interface.Geochimica et Cosmochimica Acta, 125:68-84. https://doi.org/10.1016/j.gca.2013.09.029
      Chen, M.S., Ding, S.M., Liu, L., et al., 2015.Iron-Coupled Inactivation of Phosphorus in Sediments by Macrozoobenthos (Chironomid Larvae) Bioturbation:Evidences from High-Resolution Dynamic Measurements.Environmental Pollution, 204:241-247. https://doi.org/10.1016/j.envpol.2015.04.031
      Ding, S., Wan, G.Y., Xu, D., et al., 2013.Gel-Based Coloration Technique for the Submillimeter-Scale Imaging of Labile Phosphorus in Sediments and Soils with Diffusive Gradients in Thin Films.Environmental Science & Technology, 47(14):7821-7829. https://doi.org/10.1021/es400192j
      Ding, S.M., Xu, D., Sun, Q., et al., 2010.Measurement of Dissolved Reactive Phosphorus Using the Diffusive Gradients in Thin Films Technique with a High-Capacity Binding Phase.Environmental Science & Technology, 44(21):8169-8174. https://doi.org/10.1021/es1020873
      Ding, S.M., Han, C., Wang, Y.P., et al., 2015.In Situ, High-Resolution Imaging of Labile Phosphorus in Sediments of a Large Eutrophic Lake.Water Research, 74:100-109. https://doi.org/10.1016/j.watres.2015.02.008
      Fan, C.X., Zhou, Y.Y., Wu, Q.L., et al., 2013.The Sediment-Water Interface of Lakes:Processes and Effects.Science Press, Beijing, 71 (in Chinese).
      Gao, C.M., Zhu, Z., Wang, G.Q., et al., 2015.The Distribution of Phosphorus Forms and Its Environmental Significance in the Marine Ranching Demonstration Area of Haizhou Bay Sediment.China Environmental Science, 35(11):3437-3444 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghjkx201511031
      Gao, J., Zheng, T.L., Deng, Y.M., et al., 2017.Indigenous Iron-Reducing Bacteria and Their Impacts on Arsenic Release in Arsenic-Affected Aquifer in Jianghan Plain.Earth Science, 42(5):716-726 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705007
      Gao, Y.L., Liang, T., Tian, S.H., et al., 2016.High-Resolution Imaging of Labile Phosphorus and Its Relationship with Iron Redox State in Lake Sediments.Environmental Pollution, 219:466-474. https://doi.org/10.1016/j.envpol.2016.05.053
      Han, C., Ding, S.M., Yao, L., et al., 2015.Dynamics of Phosphorus-Iron-Sulfur at the Sediment-Water Interface Influenced by Algae Blooms Decomposition.Journal of Hazardous Materials, 300:329-337. https://doi.org/10.1016/j.jhazmat.2015.07.009
      Hou, Z.Y., Guo, C.S., Wang, J.Q., et al., 2016.Using Gassmann Equation Predict Marine Sediment Porosity.Earth Science, 41(7):1198-1205 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201607010
      Jiang, X., Jin, X.C., Yao, Y., et al., 2008.Effects of Biological Activity, Light, Temperature and Oxygen on Phosphorus Release Processes at the Sediment and Water Interface of Taihu Lake, China.Water Research, 42(8):2251-2259. https://doi.org/10.1016/j.watres.2007.12.003
      Jiao, N.Z., 1989.On the Problem of Phosphorus-Release from the Sediment.Transactions of Oceanology and Limnology, (2):80-84 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HYFB198902015.htm
      Karamanev, D.G., Nikolov, L.N., Mamatarkova, V., 2002.Rapid Simultaneous Quantitative Determination of Ferric and Ferrous Ions in Drainage Waters and Similar Solutions.Minerals Engineering, 15(5):341-346. https://doi.org/10.1016/s0892-6875(02)00026-2
      Kristensen, E., Alongi, D.M., 2006.Control by Fiddler Crabs (Uca Vocans) and Plant Roots (Avicennia Marina) on Carbon, Iron, and Sulfur Biogeochemistry in Mangrove Sediment.Limnology and Oceanography, 51(4):1557-1571. https://doi.org/10.4319/lo.2006.51.4.1557
      Lee, E.Y., Cho, K.S., Ryu, H.W., 2002.Microbial Refinement of Kaolin by Iron-Reducing Bacteria.Applied Clay Science, 22(1):47-53. https://doi.org/10.1016/s0169-1317(02)00111-4
      Liang, J., Lu, C.Y., Ye, Y., et al., 2013.Soil Respiration in a Subtropical Mangrove Wetland in the Jiulong River Estuary, China.Pedosphere, 23(5):678-685. https://doi.org/10.1016/s1002-0160(13)60060-0
      Li, B., Jia, F., Zhang, Y.L., et al., 2011.High-Resolution and Synchronous Analyses of Dissoloved Reactive Phosphorus (DRP) and Dissolved Ferrous Iron in Pore Waters of Sediments.Ecology and Environmental Sciences, 20(3):485-489 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tryhj201103017
      Li, R., Ye, Y., Chen, G.C., et al., 2007.Effect of Aegiceras Corniculata Mangrove Rehabilitation on Macro-Benthic Animals in Jiulongjiang River Estuary.Journal of Xiamen University (Natural Science), 46(1):109-114 (in Chinese with English abstract). doi: 10.1017-S1047951109990680/
      Li, Y.H., Gregory, S., 1974.Diffusion of Ions in Sea Water and in Deep-Sea Sediments.Geochimica et Cosmochimica Acta, 38(5):703-714. https://doi.org/10.1016/0016-7037(74)90145-8
      Lukkari, K., Leivuori, M., Vallius, H., et al., 2009.The Chemical Character and Burial of Phosphorus in Shallow Coastal Sediments in the Northeastern Baltic Sea.Biogeochemistry, 94(2):141-162. https://doi.org/10.1007/s10533-009-9315-y
      Luo, J., Chen, J.A., Wang, J.F., et al., 2015.Estimation of the Phosphorus Flux from the Sediments in Hongfeng Lake Using the Zr-Oxide Diffusive Gradients in Thin Films (Zr-Oxide DGT) Technique.Bulletin of Mineralogy, Petrology and Geochemistry, 34(5):1014-1020 (in Chinese with English abstract). doi: 10.1007/s12665-015-4612-3
      McGowan, K.T., Martin, J.B., 2007.Chemical Composition of Mangrove-Generated Brines in Bishop Harbor, Florida:Interactions with Submarine Groundwater Discharge.Marine Chemistry, 104(1):58-68. https://doi.org/10.1016/j.marchem.2006.12.006
      Pagès, A., Teasdale, P.R., Robertson, D., et al., 2011.Representative Measurement of Two-Dimensional Reactive Phosphate Distributions and Co-Distributed Iron (Ⅱ) and Sulfide in Seagrass Sediment Porewaters.Chemosphere, 85(8):1256-1261. https://doi.org/10.1016/j.chemosphere.2011.07.020
      Qian, B., Liu, L., Xiao, X., et al., 2014.The Process of Phosphorus Release from Lake Sediments on the Micro-Interface.Journal of Hydraulic Engineering, 45(4):482-489 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slxb201404014
      Ruban, V., López-Sánchez, J.F., Pardo, P., et al., 2001.Harmonized Protocol and Certified Reference Material for the Determination of Extractable Contents of Phosphorus in Freshwater Sediments-A Synthesis of Recent Works.Fresenius' Journal of Analytical Chemistry, 370(2-3):224-228. https://doi.org/10.1007/s002160100753
      Shen, S., Ma, T., Du, Y., et al., 2017.Dynamic Variations of Nitrogenin Groundwater under Influence of Seasonal Hydrological Condition in Typical Area of Jianghan Plain.Earth Science, 42(5):674-684 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201705002.htm
      Skoog, A.C., Arias-Esquivel, V.A., 2009.The Effect of Induced Anoxia and Reoxygenation on Benthic Fluxes of Organic Carbon, Phosphate, Iron, and Manganese.Science of the Total Environment, 407(23):6085-6092. https://doi.org/10.1016/j.scitotenv.2009.08.030
      State Administration for Quality Supervision and Inspection and Quarantine, National Standardization Administration Committee, 2007.GB 17378-2007, The Specification for Marine Monitoring China.Ocean Press, Beijing, 54 (in Chinese).
      Stockdale, A., Davison, W., Zhang, H., 2009.Micro-Scale Biogeochemical Heterogeneity in Sediments:A Review of Available Technology and Observed Evidence.Earth-Science Reviews, 92(1):81-97. https://doi.org/10.1016/j.earscirev.2008.11.003
      Sun, Q., Zhang, L., Ding, S., et al., 2015.Evaluation of the Diffusive Gradients in Thin Films Technique Using a Mixed Binding Gel for Measuring Iron, Phosphorus and Arsenic in the Environment.Environmental Science:Processes & Impacts, 17(3):570-577. https://doi.org/10.1039/C4EM00629A
      Tipping, E., 1981.The Adsorption of Aquatic Humic Substances by Iron Oxides.Geochimica et Cosmochimica Acta, 45(2):191-199. https://doi.org/10.1016/0016-7037(81)90162-9
      Toggweiler, J.R., 1999.Oceanography:An Ultimate Limiting Nutrient.Nature, 400(6744):511-512. https://doi.org/10.1038/22892
      Ullman, W.J., Aller, R.C., 1982.Diffusion Coefficients in Nearshore Marine Sediments.Limnology and Oceanography, 27(3):552-556. https://doi.org/10.4319/lo.1982.27.3.0552
      Wang, Y.Y., Huang, S.B., Zhao, L., et al., 2017.Evolution of Quaternary Sedimentary Environment in Shallow Aquifers, at Shahu Area, Jianghan Plain.Earth Science, 42(5):751-760 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705011
      Xu, D., Chen, Y.F., Ding, S.M., et al., 2013.Diffusive Gradients in Thin Films Technique Equipped with a Mixed Binding Gel for Simultaneous Measurements of Dissolved Reactive Phosphorus and Dissolved Iron.Environmental Science & Technology, 47(18):10477-10484. https://doi.org/10.1021/es401822x
      Yao, Y., Wang, P.F., Wang, C., et al., 2016.Assessment of Mobilization of Labile Phosphorus and Iron across Sediment-Water Interface in a Shallow Lake (Hongze) Based on In Situ High-Resolution Measurement.Environmental Pollution, 219:873-882. https://doi.org/10.1016/j.envpol.2016.08.054
      Zhang, H., Davison, W., Gadi, R., et al., 1998.In Situ Measurement of Dissolved Phosphorus in Natural Waters Using DGT.Analytica Chimica Acta, 370(1):29-38. https://doi.org/10.1016/s0003-2670(98)00250-5
      Zhang, X.Y., Yang, Q., Sun, Y., et al., 2013.The Distribution of Phosphorus Forms and Bioavailability in Sediments from Huang Dong Hai Continental Shelf.Acta Ecologica Sinica, 33(11):3509-3519 (in Chinese with English abstract). doi: 10.5846/stxb
      Zhong, S., Wu, Y.P., Xu, J.M., 2009.Phosphorus Utilization and Microbial Community in Response to Lead/Iron Addition to a Waterlogged Soil.Journal of Environmental Sciences, 21(10):1415-1423. https://doi.org/10.1016/s1001-0742(08)62434-1
      Zhou, W., Wang, Q., Zhao, Q.Y., et al., 1990.Color Variation of Surface Sediment in South Bohai Sea.Marine Sciences, 14(3):31-35 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005268235
      Zhu, G.W., Gao, G., Qin, B.Q., et al., 2003.Geochemical Characteristics of Phosphorus in Sediments of a Large Shallow Lake.Advances in Water Science, 14(6):714-719 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=skxjz200306008
      鲍士旦, 2000.土壤农化分析(第三版).北京:中国农业出版社, 21.
      范成新, 周易勇, 吴庆龙, 等, 2013.湖泊沉积物界面过程与效应.北京:科学出版社, 71.
      高春梅, 朱珠, 王功芹, 等, 2015.海州湾海洋牧场海域表层沉积物磷的形态与环境意义.中国环境科学, 35(11):3437-3444. doi: 10.3969/j.issn.1000-6923.2015.11.031
      高杰, 郑天亮, 邓娅敏, 等, 2017.江汉平原高砷地下水原位微生物的铁还原及其对砷释放的影响.地球科学, 42(5):716-726. http://www.earth-science.net/WebPage/Article.aspx?id=3576
      侯正瑜, 郭常升, 王景强, 等, 2016.利用Gassmann方程预测海底沉积物孔隙度.地球科学, 41(7):1198-1205. http://www.earth-science.net/WebPage/Article.aspx?id=3328
      焦念志, 1989.关于沉积物释磷问题的研究.海洋湖沼通报, (2):80-84. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001531828
      李斌, 贾飞, 张银龙, 等, 2011.沉积物间隙水溶解态磷和铁(Ⅱ)高分辨同步分析方法的研究.生态环境学报, 20(3):485-489. doi: 10.3969/j.issn.1674-5906.2011.03.017
      李蓉, 叶勇, 陈光程, 等, 2007.九龙江口桐花树红树林恢复对大型底栖动物的影响.厦门大学学报(自然科学版), 46(1):109-114. doi: 10.3321/j.issn:0438-0479.2007.01.025
      罗婧, 陈敬安, 王敬富, 等, 2015.利用薄膜扩散梯度技术估算红枫湖沉积物磷释放通量.矿物岩石地球化学通报, 34(5):1014-1020. doi: 10.3969/j.issn.1007-2802.2015.05.017
      钱宝, 刘凌, 肖潇, 等, 2014.湖泊沉积物-水微界面上磷的释放过程研究.水利学报, 45(4):482-489. http://d.old.wanfangdata.com.cn/Periodical/slxb201404014
      沈帅, 马腾, 杜尧, 等, 2017.江汉平原典型地区季节性水文条件影响下氮的动态变化规律.地球科学, 42(5):674-684. http://www.earth-science.net/WebPage/Article.aspx?id=3580
      王妍妍, 黄爽兵, 赵龙, 等, 2017.江汉平原沙湖地区浅层含水层第四纪沉积环境演化.地球科学, 42(5):751-760. http://www.earth-science.net/WebPage/Article.aspx?id=3573
      张小勇, 杨茜, 孙耀, 等, 2013.黄东海陆架区沉积物中磷的形态分布及生物可利用性.生态学报, 33(11):3509-3519. http://d.old.wanfangdata.com.cn/Periodical/stxb201311028
      中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2007.GB17378-2007, 海洋监测规范.北京:海洋出版社, 54.
      周伟, 王琦, 赵其渊, 等, 1990.渤海南部海底沉积物颜色的研究.海洋科学, 14(3):31-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005268235
      朱广伟, 高光, 秦伯强, 等, 2003.浅水湖泊沉积物中磷的地球化学特征.水科学进展, 14(6):714-719. doi: 10.3321/j.issn:1001-6791.2003.06.008
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(2)

      Article views (3935) PDF downloads(60) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return