• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 9
    Sep.  2019
    Turn off MathJax
    Article Contents
    Qiu Dengfeng, Liu Quanyou, Yun Jinbiao, Zhu Dongya, Meng Qingqiang, Liu Jiayi, Sun Dongsheng, 2019. The Thermodynamic Characteristics of Quartz E' Center and Their Significance. Earth Science, 44(9): 2995-3006. doi: 10.3799/dqkx.2018.193
    Citation: Qiu Dengfeng, Liu Quanyou, Yun Jinbiao, Zhu Dongya, Meng Qingqiang, Liu Jiayi, Sun Dongsheng, 2019. The Thermodynamic Characteristics of Quartz E' Center and Their Significance. Earth Science, 44(9): 2995-3006. doi: 10.3799/dqkx.2018.193

    The Thermodynamic Characteristics of Quartz E' Center and Their Significance

    doi: 10.3799/dqkx.2018.193
    • Received Date: 2017-08-27
    • Publish Date: 2019-09-15
    • The electron paramagnetic resonance of quartz is a dating technique through accumulated irradiation energy absorbed by minerals. Although it is commonly used in Quaternary period,the greatly enhanced EPR signals of quartz E' center after thermal activation provide opportunity for extending the dating range of EPR,while there are many different opinions on the thermal activation physical conditions and the formation and transformation mechanism of quartz E' center. In this paper,through the artificial γ ray radiation and stepwise annealing experiments to the granite and fault zone samples,the quartz E' center signal intensities under different irradiation conditions and different temperatures are measured by EPR technique,and the growth and formation mechanisms of quartz E' center are studied. The results indicate that the signal intensity of quartz E' center can be enhanced by normal artificial γ ray radiation under room temperature and by high temperature heating. The dating method and geological significance of E' center at normal and high temperature is discussed separately. The signal intensity of normal E' center is relatively constant below 150℃,and can be calibrated to calculate the accumulated dose and date fault forming age within Quaternary by normal additive dose method. The signal intensity of quartz E' center can be greatly enhanced by thermal activation and can be used to date geological age before Quaternary,but the activated peak signal intensity of known age quartz E' center should be used as a benchmark or the oxygen vacancy should be regenerated by high-dose γ ray irradiation or neutron irradiation. Then,the dose response curve of oxygen vacancy in quartz can be fitted to calculate the accumulated irradiation energy represented by the high temperature E' center. The thermodynamic peak of E' center should be determined by stepped annealing experiment and its signal intensity ratio (I2/I1) at high temperature and room temperature has the geological significance of recording irradiation energy and geological age.

       

    • loading
    • An, F. Y., Lai, Z. P., Liu, X. J., et al., 2018. Luminescence Chronology and Radiocarbon Reservoir Age Determination of Lacustrine Sediments from the Heihai Lake, NE Qinghai-Tibetan Plateau and Its Paleoclimate Implications. Journal of Earth Science, 29(3): 695-706. https://doi.org/10.1007/s12583-017-0972-9
      Blackwell, B. A. B., Skinner, A. R., Blickstein, J. I. B., et al., 2016. ESR in the 21st Century: From Buried Valleys and Deserts to the Deep Ocean and Tectonic Uplift. Earth-Science Reviews, 158: 125-159. https://doi.org/10.1016/j.earscirev.2016.01.001
      Chen, J.Y., Liang, X.Z., Feng, J.M., et al., 1991.A Study of Annealing on E' Center in Quartz. Journal of Sichuan University (Natural Science Edition), 28(3):314-317 (in Chinese with English abstract).
      Chen, Y., Feng, J., Gao, J., et al., 1997. Investigation of the Potential Use of ESR Signals in Quartz for Palaeothermometry. Quaternary Science Reviews, 16(3-5): 495-499. https://doi.org/10.1016/s0277-3791(96)00094-7
      Choi, P., Hwang, J., Bae, H., et al., 2015. Kinematics and ESR Ages for Fault Gouges of the Quaternary Jingwan Fault, Dangjin, Western Korea. Journal of the Korean Earth Science Society, 36(1): 1-15. https://doi.org/10.5467/jkess.2015.36.1.1
      Deng, B., Liu, S.G., Liu, S., et al., 2013. Tectono-Thermal Events and Chronological Framework in Zoige and Its Periphery. Earth Science, 38(2): 317-328 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201302010
      Diao, S.B., Ye, Y.G., Sui, W.D., et al., 2004. The Estimation of the Average Life of Gypsum from Lanzhou Basin at g=2.004. Acta GeoscienticaSinica, 25(2): 209-212(in Chinese with English abstract).
      Ehlers, T. A., Farley, K. A., 2003. Apatite (U-Th)/He Thermochronometry: Methods and Applications to Problems in Tectonic and Surface Processes. Earth and Planetary Science Letters, 206(1-2): 1-14. https://doi.org/10.1016/s0012-821x(02)01069-5
      Feigl, F. J., Fowler, W. B., Yip, K. L., 1974. Oxygen Vacancy Model for the E1' Centre in SiO2. Solid State Communications, 14(3): 225-229. https://doi.org/10.1016/0038-1098(74)90840-0
      Fu, Y.D., Cai, X.C., 1981. The Electron and Hole Centers in Minerals and Its Application. Geology and Geochemistry, (5): 37-42 (in Chinese).
      Fukuchi, T., Imai, N., Shimokawa, K., 1986. ESR Dating of Fault Movement Using Various Defect Centres in Quartz: The Case in the Western South Fossa Magna, Japan. Earth and Planetary Science Letters, 78(1): 121-128. https://doi.org/10.1016/0012-821x(86)90178-0
      Gao, W., Jia, D. C., Jiang, Q. G., et al., 2014. ESR Age of a Quaternary Sedimentary Profile in Manjiang, Fusong County, Changbai Mountain Region, and Its Significance. Quaternary International, 349(6): 49-58. https://doi.org/10.1016/j.quaint.2014.04.044
      Gong, G.L., Li, S.H., Sun, W.D., et al., 2010. Quartz Thermoluminescence—Another Potential Paleothermometer for Sedimentary Basin Thermal History Study. Chinese Journal of Geophysics, 53(1):138-146 (in Chinese with English abstract).
      Grün, R., 1989. Electron Spin Resonance (ESR) Dating. Quaternary International, 1: 65-109. https://doi.org/10.1016/1040-6182(89)90010-4
      Grün, R., Tani, A., Gurbanov, A., et al., 1999. A New Method for the Estimation of Cooling and Denudation Rates Using Paramagnetic Centers in Quartz: A Case Study on the Eldzhurtinskiy Granite, Caucasus. Journal of Geophysical Research: Solid Earth, 104(B8): 17531-17549. https://doi.org/10.1029/1999jb900173
      Guralnik, B., Jain, M., Herman, F., et al., 2015. OSL-Thermochronometry of Feldspar from the KTB Borehole, Germany. Earth and Planetary Science Letters, 423: 232-243. https://doi.org/10.1016/j.epsl.2015.04.032
      Jani, M.G., Bossoli, R.B., Halliburton, L.E., 1983. Further Characterization of the E1′ Center in Crystalline SiO2. Physical Review B, 27(4): 2285-2293. https://doi.org/10.1103/physrevb.27.2285
      Kittel, C., 1971. Introduction to Solid State Physics. John Wiley and Sons, New York, 752.
      Lee, H. K., Yang, J. S., 2003. ESR Dating of the Wangsan Fault, South Korea. Quaternary Science Reviews, 22(10-13): 1339-1343. https://doi.org/10.1016/s0277-3791(03)00018-0
      Lee, H. K., Yang, J. S., 2007. ESR Dating of the Eupchon Fault, South Korea. Quaternary Geochronology, 2(1-4): 392-397. https://doi.org/10.1016/j.quageo.2006.04.009
      Liu, C. R., Yin, G. M., Fang, F., et al., 2013a. ESR Dating of the Donggutuo Palaeolithic Site in the Nihewan Basin, Northern China. Geochronometria, 40(4): 348-354. https://doi.org/10.2478/s13386-013-0127-4
      Liu, C. R., Yin, G. M., Zhang, H. P., et al., 2013b. ESR Geochronology of the Minjiang River Terraces at Wenchuan, Eastern Margin of Tibetan Plateau, China. Geochronometria, 40(4): 360-367. https://doi.org/10.2478/s13386-013-0129-2
      Liu, C.R., Yin, G.M., Grün, R., et al., 2013.Research Progress of the Resetting Features of Quartz ESR Signal. Advances in Earth Science, 28(1):24-30 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201301003
      Nadzri, A., Schauries, D., Mota-Santiago, P., et al., 2017. Composition and Orientation Dependent Annealing of Ion Tracks in Apatite-Implications for Fission Track Thermochronology. Chemical Geology, 451(20): 9-16. https://doi.org/10.1016/j.chemgeo.2016.12.039
      Odom, A. L., Rink, W. J., 1989. Natural Accumulation of Schottky-Frenkel Defects: Implications for a Quartz Geochronometer. Geology, 17(1): 55-58. https://doi.org/10.1130/0091-7613(1988)017 < 0055:naosfd > 2.3.co; 2 doi: 10.1130/0091-7613(1988)017<0055:naosfd>2.3.co;2
      Porat, N., Schwarcz, H. P., Valladas, H., et al., 1994. Electron Spin Resonance Dating of Burned Flint from Kebara Cave, Israel. Geoarchaeology, 9(5): 393-407. https://doi.org/10.1002/gea.3340090504
      Qiu, D.F., Yun, J.B., Liu, Q.Y., et al., 2017.The Analysis of Influence Factors on Electron Spin Resonance Signal Intensity in Dating of Quartz in Fault Lines. Rock and Mineral Analysis, 36(1):22-31 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs201701003
      Ren, S. L., Song, C. Z., Li, J. H., 2016. Application of Electron Spin Resonance (ESR) Dating to Ductile Shearing: Examples from the Qinling Orogenic Belt, China. Journal of Structural Geology, 85: 12-17. https://doi.org/10.1016/j.jsg.2016.02.002
      Rink, W. J., Odom, A.L., 1991. Natural Alpha Recoil Particle Radiation and Ionizing Radiation Sensitivities in Quartz Detected with EPR: Implications for Geochronometry. Nuclear Tracks and Radiation Measurements, 18(1-2): 163-173. https://doi.org/10.1016/1359-0189(91)90108-t
      Sarkar, S., Mathew, G., Pande, K. C., et al., 2013. Rapid Denudation of Higher Himalaya during Late Pliestocence, Evidence from OSL Thermochronology. Geochronometria, 40(4): 304-310. https://doi.org/10.2478/s13386-013-0124-7
      Song, L.J., Liu, C.Y., Yuan, B.Q., et al., 2018.The Dating of Formation Age of Clastic Rock Based on the Thermal Evolution History of Apatite Fission Track. Earth Science, 43(S2):214-225 (in Chinese with English abstract).
      Toyoda, S., 1992. Production and Decay Characteristics of Paramagnetic Defects in Quartz: Applications to ESR Dating (Dissertation). Osaka University, Osaka, 106.
      Toyoda, S., 2005. Formation and Decay of the E1′ Center and Its Precursor in Natural Quartz: Basics and Applications. Applied Radiation and Isotopes, 62(2): 325-330. https://doi.org/10.1016/j.apradiso.2004.08.014
      Toyoda, S., 2015. Paramagnetic Lattice Defects in Quartz for Applications to ESR Dating. Quaternary Geochronology, 30: 498-505. https://doi.org/10.1016/j.quageo.2015.05.010
      Toyoda, S., Hattori, W., 2000. Formation and Decay of the E1′ Center and of Its Precursor. Applied Radiation and Isotopes, 52(5): 1351-1356. https://doi.org/10.1016/s0969-8043(00)00094-4
      Toyoda, S., Ikeya, M., Morikawa, J., et al., 1992. Enhancement of Oxygen Vacancies in Quartz by Natural External β and γ Ray Dose: A Possible ESR Geochronometer of Ma-Ga Range. Geochemical Journal, 26(3): 111-115. https://doi.org/10.2343/geochemj.26.111
      Toyoda, S., Nagashima, K., Yamamoto, Y., 2016. ESR Signals in Quartz: Applications to Provenance Research—A Review. Quaternary International, 397: 258-266. https://doi.org/10.1016/j.quaint.2015.05.048
      Toyoda, S., Schwarcz, H. P., 1997. Counterfeit E1′ Signal in Quartz. Radiation Measurements, 27(1): 59-66. https://doi.org/10.1016/s1350-4487(96)00073-x
      Ulusoy, Ü., 2004. ESR Dating of North Anatolian (Turkey) and Nojima (Japan) Faults. Quaternary Science Reviews, 23(1-2): 161-174. https://doi.org/10.1016/s0277-3791(03)00214-2
      Voinchet, P., Despriée, J., Tissoux, H., et al., 2010. ESR Chronology of Alluvial Deposits and First Human Settlements of the Middle Loire Basin (Region Centre, France). Quaternary Geochronology, 5(2-3): 381-384. https://doi.org/10.1016/j.quageo.2009.03.005
      Wieser, A., Regulla, D. F., 1989. ESR Dosimetry in the "Gigarad" Range. Applied Radiation and Isotopes, 40(10-12): 911-913. https://doi.org/10.1016/0883-2889(89)90016-6
      Yang, F., Fang, C.M., Huang, Z.G., et al., 2014.ESR Dating of Helan Mountain Fault Zone. Petroleum Geology & Experiment, 36(5):642-644 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201405020
      Yang, K.G., Liang, X.Z., Xie, J.L., et al., 2006. ESR Dating, the Principle and Application of a Method to Determine Active Ages of Brittle Faults. Advances in Earth Science, 21(4):430-435 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz200604013
      Yao, Y.M., Xiu, S.C., Wei, X.L., et al., 2002.Researches on the ESR Geochronometry in Palaeogene of Dongying Depression. Oil & Gas Recovery Technology, 9(2):31-34 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqdzycsl200202010
      Ye, Y.G., Diao, S.B., Dai, C.S., et al., 1997. Preliminary Study on ESR Dating for the Lower Tertiary Sandstone in Liaohe Basin. Marine Geology & Quaternary Geology, 17(1): 17-24 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700957273
      Ye, Y.G., Diao, S.B., Wu, X.L., et al., 2000. Thermodynamic Behavior of E' Center in Quartz from Sediments Application Potential in Geochronometry and Palaeothermometry. Rock and Mineral Analysis, 19(1): 4-6 (in Chinese with English abstract).
      Ye, Y.G., Diao, S.B., Wu, X.L., et al., 2001. Thermodynamic Behavior of E' Center in Quartz from Deep Sediments, Tarim Basin. Petroleum Exploration and Development, 28(5): 23-24 (in Chinese with English abstract).
      Ye, Y.G., Liang, H.D., 1996. The Oxygen Vacancy Concentration in Quartz and Its Geological Dating Significance. Petroleum Exploration and Development, 23(2): 95-97 (in Chinese with English abstract).
      Ye, Y.G., Wu, X.L., Diao, S.B., et al., 1999. ESR Study of Kuqa River Geological Profile, Tarim Basin. Petroleum Exploration and Development, 26(25): 25-27(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900598234
      Yi, C. L., Bi, W. L., Li, J. P., 2016. ESR Dating of Glacial Moraine Deposits: Some Insights about the Resetting of the Germanium (Ge) Signal Measured in Quartz. Quaternary Geochronology, 35: 69-76. https://doi.org/10.1016/j.quageo.2016.06.003
      Yin, G.M., Zhao, B., Xu, J.D., et al., 2013.Electron Spin Resonance Data of the Xiaoshan Volcano in Cangzhou, Hebei Province. Acta Petrologica Sinica, 29(12):4415-4420 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201312025
      Yu, S., Chen, W., Lü, X.X., et al., 2014. (U-Th)/He Thermochronometry Constraints on the Mesozoic-Cenozoic Tectono-Thermal Evolution of Kuqa Basin: A Case Study of Well TZ2.Chinese Journal of Geophysics, 57(1):62-74 (in Chinese with English abstract).
      Zeng, F. M., Xiang, S. Y., 2017. Geochronology and Mineral Composition of the Pleistocene Sediments in Xitaijinair Salt Lake Region, Qaidam Basin: Preliminary Results. Journal of Earth Science, 28(4): 622-627. https://doi.org/10.1007/s12583-016-0712-6
      Zheng, R.C., 1998. Application of ESR Dating to Petroleum Geology. Oil & Gas Geology, 19(2): 93-98(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800570571
      陈继镛, 梁兴中, 冯家岷, 等, 1991.石英中E′心的热活化研究.四川大学学报(自然科学版), 28(3):314-317.
      邓宾, 刘树根, 刘顺, 等, 2013.川西若尔盖地区中-新生代构造-热事件及其年代学框架.地球科学, 38(2):317-328. doi: 10.3799/dqkx.2013.031
      刁少波, 业渝光, 隋卫东, 等, 2004.兰州盆地石膏g=2.004峰平均寿命的估算.地球学报, 25(2):209-212. doi: 10.3321/j.issn:1006-3021.2004.02.022
      富毓德, 蔡秀成, 1981.矿物中的电子-空穴中心及其应用.地质地球化学, (5): 37-42.
      龚革联, 李盛华, 孙卫东, 等, 2010.石英热释光——沉积盆地热史研究中另一种潜在的古温标.地球物理学报, 53(1):138-146. doi: 10.3969/j.issn.0001-5733.2010.01.015
      刘春茹, 尹功明, Grün, R., 等, 2013.石英ESR测年信号衰退特征研究进展.地球科学进展, 28(1): 24-30. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201301003
      邱登峰, 云金表, 刘全有, 等, 2017.断层电子自旋共振定年中石英信号强度的影响因素分析.岩矿测试, 36(1):22-31. http://d.old.wanfangdata.com.cn/Periodical/ykcs201701003
      宋立军, 刘池阳, 袁炳强, 等, 2018.基于碎屑磷灰石裂变径迹热史判别碎屑岩形成时代的方法.地球科学, 43(增刊2):214-225. http://www.cnki.com.cn/Article/CJFDTotal-DQKX2018S2017.htm
      杨帆, 方成名, 黄泽光, 等, 2014.贺兰山断裂带的ESR年龄测定.石油实验地质, 36(5):642-644. http://d.old.wanfangdata.com.cn/Periodical/sysydz201405020
      杨坤光, 梁兴中, 谢建磊, 等, 2006.ESR定年:一种确定脆性断层活动年龄的方法原理与应用.地球科学进展, 21(4):430-435. doi: 10.3321/j.issn:1001-8166.2006.04.013
      姚益民, 修申成, 魏秀玲, 等, 2002.东营凹陷下第三系ESR测年研究.油气地质与采收率, 9(2):31-34. doi: 10.3969/j.issn.1009-9603.2002.02.010
      业渝光, 刁少波, 戴春山, 等, 1997.辽河盆地下第三系砂岩层ESR测年的初步研究.海洋地质与第四纪地质, 17(1):17-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700957273
      业渝光, 刁少波, 邬象隆, 等, 2000.沉积物中石英E′心的热力学特性及其地质应用意义.岩矿测试, 19(1):4-6. doi: 10.3969/j.issn.0254-5357.2000.01.002
      业渝光, 刁少波, 邬象隆, 等, 2001.塔里木盆地深层沉积物石英E′心热力学特性.石油勘探与开发, 28(5):23-24. doi: 10.3321/j.issn:1000-0747.2001.05.006
      业渝光, 梁鸿德, 1996.石英氧空位浓度及其地质计时意义.石油勘探与开发, 23(2):95-97. doi: 10.3321/j.issn:1000-0747.1996.02.024
      业渝光, 邬象隆, 刁少波, 等, 1999.塔里木盆地库车河地质剖面ESR研究.石油勘探与开发, 26(25):25-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900598234
      尹功明, 赵波, 许建东, 等, 2013.河北沧州小山火山的ESR年代学研究.岩石学报, 29(12):4415-4420. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201312025
      喻顺, 陈文, 吕修祥, 等, 2014.(U-Th)/He技术约束下库车盆地北缘构造热演化——以吐孜2井为例.地球物理学报, 57(1):62-74.
      郑荣才, 1998. ESR测年在石油地质研究中的应用.石油与天然气地质, 19(2):93-98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800570571
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)

      Article views (4853) PDF downloads(22) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return