• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Zhao Kai, Yao Huazhou, Wang Jianxiong, Ghebsha Fitwi Ghebretnsae, Xiang Wenshuai, Yang Zhen, 2020. Zircon U-Pb Geochronology and Geochemistry of Koka Granite and Its Geological Significance, Eritrea. Earth Science, 45(1): 156-167. doi: 10.3799/dqkx.2018.237
    Citation: Zhao Kai, Yao Huazhou, Wang Jianxiong, Ghebsha Fitwi Ghebretnsae, Xiang Wenshuai, Yang Zhen, 2020. Zircon U-Pb Geochronology and Geochemistry of Koka Granite and Its Geological Significance, Eritrea. Earth Science, 45(1): 156-167. doi: 10.3799/dqkx.2018.237

    Zircon U-Pb Geochronology and Geochemistry of Koka Granite and Its Geological Significance, Eritrea

    doi: 10.3799/dqkx.2018.237
    • Received Date: 2018-07-06
    • Publish Date: 2020-01-15
    • Koka granite, located in the west of the Nakfa region in Eritrea, is the main host rock of Koka gold deposit. The major elements of the granite are characteristiced by high SiO2 (67.94%-78.40%), Na2O+K2O (5.86%-8.76%), Al2O3 (11.05%-16.51%) and FeOT (2.46%-3.80%), weakly peraluminous to strongly peraluminous (A/CNK is 1.09-1.55), and low CaO (0.06%-1.85%), MgO (0.15%-0.39%). It is also enriched in LREEs and relatively depleted in HREEs, strongly depleted in Sr, P, Ti. The REE distribution curve shows characteristics such as swallow distribution and apparent negative europium anomalies. All of these indicate that the Koka granite has an affinity of A-type granite. Zircon LA-ICP-MS U-Pb dating shows the granite formed in early period of the Neoproterozoic with the diagenetic age of 851.2±1.9 Ma. This is different from the A-type granite which is widely distributed and related to the extension after collisional orogen (650-540 Ma). Combined with the regional geological research results, it is suggested that Koka granite was formed in a back-arc extensional environment which resulted from subduction. The zircon has a certain Ce positive anomaly, and variation range of the Ce4+/Ce3+ is 3.86-146.31, with an average of 32.4, indicating low degree of magmatic oxygen fugacity. Meanwhile the parental magma of Koka granite is "dry", suggesting that the metallogenic potentiality is low, and it is hard to form related large or super large deposits.

       

    • Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
      Andersson, U. B., Ghebreab, W., Teklay, M., 2006. Crustal Evolution and Metamorphism in East-Central Eritrea, South-East Arabian-Nubian Shield. Journal of African Earth Sciences, 44(1):45-65. https://doi.org/10.1016/j.jafrearsci.2005.11.006
      Ballard, J. R., Palin, M. J., Campbell, I. H., 2002. Relative Oxidation States of Magmas Inferred from Ce(Ⅳ)/Ce(Ⅲ) in Zircon:Application to Porphyry Copper Deposits of Northern Chile. Contributions to Mineralogy and Petrology, 144(3):347-364. https://doi.org/10.1007/s00410-002-0402-5
      Bonin, B., 2007. A-Type Granites and Related Rocks:Evolution of a Concept, Problems and Prospects. Lithos, 97(1-2):1-29. https://doi.org/10.1016/j.lithos.2006.12.007
      Chen, X. C., Hu, R. Z., Bi, X. W., et al., 2015. Petrogenesis of Metaluminous A-Type Granitoids in the Tengchong-Lianghe Tin Belt of Southwestern China:Evidences from Zircon U-Pb Ages and Hf-O Isotopes, and Whole-Rock Sr-Nd Isotopes. Lithos, 212-215:93-110. https://doi.org/10.1016/j.lithos.2014.11.010
      Doebrich, J. L., Zahony, S. G., Leavitt, J. D., et al., 2004. Ad Duwayhi, Saudi Arabia:Geology and Geochronology of a Neoproterozoic Intrusion-Related Gold System in the Arabian Shield. Economic Geology, 99(4):713-741. https://doi.org/10.2113/gsecongeo.99.4.713
      Drury, S. A., De Souza Filho, C. R., 1998. Neoproterozoic Terrane Assemblages in Eritrea:Review and Prospects. Journal of African Earth Sciences, 27(3-4):331-348. https://doi.org/10.1016/s0899-5362(98)00066-9
      Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids:Petrogenetic and Tectonic Implications. Geology, 20(7):641-644. https://doi.org/10.1130/0091-7613(1992)020<0641:csotat>2.3.co; 2 doi: 10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2
      Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11):2033-2048. https://doi.org/10.1093/petrology/42.11.2033
      Harris, N. B. W., Marzouki, F. M. H., Ali, S., 1986. The Jabel Sayid Complex, Arabian Shield:Geochemical Constraints on the Origin of Peralkaline and Related Granites. Journal of the Geological Society, 143(2):287-295. https://doi.org/10.1144/gsjgs.143.2.0287
      Hu, P. Y., Li, C., Wu, Y. W., et al., 2016. A Back-Arc Extensional Environment of the Early Carboniferous Paleo-Tethys Ocean in Tibetan Plateau:Evidences from A-Type Granites. Acta Petrologica Sinica, 32(4):1219-1231 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201604020
      Johnson, P. R., Andresen, A., Collins, A. S., et al., 2011. Late Cryogenian-Ediacaran History of the Arabian-Nubian Shield:A Review of Depositional, Plutonic, Structural, and Tectonic Events in the Closing Stages of the Northern East African Orogen. Journal of African Earth Sciences, 61(3):167-232. https://doi.org/10.1016/j.jafrearsci.2011.07.003
      King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3):371-391. https://doi.org/10.1093/petroj/38.3.371
      Košler, J., Fonneland, H., Sylvester, P., et al., 2002. U-Pb Dating of Detrital Zircons for Sediment Provenance Studies-A Comparison of Laser Ablation ICPMS and SIMS Techniques. Chemical Geology, 182(2-4):605-618. https://doi.org/10.1016/s0009-2541(01)00341-2
      Kröner, A., Linnebacher, P., Stern, R. J., et al., 1991. Evolution of Pan-African Island Arc Assemblages in the Southern Red Sea Hills, Sudan, and in Southwestern Arabia as Exemplified by Geochemistry and Geochronology. Precambrian Research, 53(1-2):99-118. https://doi.org/10.1016/0301-9268(91)90007-w
      Liu, B., Ma, C. Q., Guo, P., et al., 2013. Discovery of the Middle Devonian A-Type Granite from the Eastern Kunlun Orogen and Its Tectonic Implications. Earth Science, 38(5):947-962 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201305005
      Liu, C. S., Chen, X. M., Chen, P. R., et al., 2003. Subdivision, Discrimination Criteria and Genesis for A Type Rock Suites. Geological Journal of China Universities, 9(4):573-591 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200304011
      Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082
      Loiselle, M. C., Wones, D. R., 1979. Characteristics and Origin of Anorogenic Granites. Geological Society of America, Boulder.
      Ludwig, .R., 2001. SQUID 1.02, A User's Manual. Berkeley Geochronological Center, Berkeley.
      Mahdy, N. M., El Kalioubi, B. A., Wohlgemuth-Ueberwasser, C. C., et al., 2015. Petrogenesis of U- and Mo-Bearing A2-Type Granite of the Gattar Batholith in the Arabian Nubian Shield, Northeastern Desert, Egypt:Evidence for the Favorability of Host Rocks for the Origin of Associated Ore Deposits. Ore Geology Reviews, 71:57-81. https://doi.org/10.1016/j.oregeorev.2015.05.001
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5):635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co; 2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
      Middlemost E. A. K., 1985. Magmas and Magmatic Rocks. An Introduction to Igneous Petrology, Longman, New York.
      Möller, A., O'Brien, P. J., Kennedy, A., et al., 2003. Linking Growth Episodes of Zircon and Metamorphic Textures to Zircon Chemistry:An Example from the Ultrahigh-Temperature Granulites of Rogaland (SW Norway). Geological Society, London, Special Publications, 220(1):65-81. https://doi.org/10.1144/gsl.sp.2003.220.01.04
      Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956
      Richards, J. P., 2015. The Oxidation State, and Sulfur and Cu Contents of Arc Magmas:Implications for Metallogeny. Lithos, 233:27-45. https://doi.org/10.1016/j.lithos.2014.12.011
      Stern, R. J., 1994. Arc-Assembly and Continental Collision in the Neoproterozoic African Orogen:Implications for the Consolidation of Gondwanaland. Annual Review of Earth and Planetary Sciences, 22(1):319-351. https://doi.org/10.1146/annurev.earth.22.1.319
      Stern, R. J., Johnson, P., 2010. Continental Lithosphere of the Arabian Plate:A Geologic, Petrologic, and Geophysical Synthesis. Earth-Science Reviews, 101(1-2):29-67. https://doi.org/10.1016/j.earscirev.2010.01.002
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Teklay, M., 1997. Petrology, Geochemistry and Geochronology of Neoproterozoic Magmatiic Arc Rocks from Eritrea: Implications for Crustal Evolution in the Southern Nubian Shield. Memoir, Asmara.
      Teklay, M., 2006. Neoproterozoic Arc-Back-Arc System Analog to Modern Arc-Back-Arc Systems:Evidence from Tholeiite-Boninite Association, Serpentinite Mudflows and Across-Arc Geochemical Trends in Eritrea, Southern Arabian-Nubian Shield. Precambrian Research, 145(1-2):81-92. https://doi.org/10.1016/j.precamres.2005.11.015
      Teklay, M., Berhe, K., Reimold, W. U., et al., 2002a. Geochemistry and Geochronology of a Neoproterozoic Low-K Tholeiite-Boninite Association in Central Eritrea. Gondwana Research, 5(3):597-611. https://doi.org/10.1016/s1342-937x(05)70632-8
      Teklay, M., Kröner, A., Mezger, K., 2002b. Enrichment from Plume Interaction in the Generation of Neoproterozoic Arc Rocks in Northern Eritrea:Implications for Crustal Accretion in the Southern Arabian-Nubian Shield. Chemical Geology, 184(1-2):167-184. https://doi.org/10.1016/s0009-2541(01)00359-x
      Teklay, M., Haile, T., Kröner, A., et al., 2003. A Back-Arc Palaeotectonic Setting for the Augaro Neoproterozoic Magmatic Rocks of Western Eritrea. Gondwana Research, 6(4):629-640. https://doi.org/10.1016/s1342-937x(05)71012-1
      Trail, D., Watson, E. B., Tailby, N. D., 2011. The Oxidation State of Hadean Magmas and Implications for Early Earth's Atmosphere. Nature, 480(7375):79-82. https://doi.org/10.1038/nature10655
      Wang, Q., Zhao, Z. H., Xiong, X. L., 2000. The Ascertainment of Late-Yanshanian A-Type Granite in Tongbai-Dabie Orogenic Belt. Acta Petrologica et Mineralogica, 19(4):297-306 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz200004002
      Wang, Y. L., Li, Y. J., Wei, J. H., et al., 2018. Origin of Late Silurian A-Type Granite in Wulonggou Area, East Kunlun Orogen:Zircon U-Pb Age, Geochemistry, Nd and Hf Isotopic Constraints. Earth Science, 43(4):1219-1236 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201804018
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202
      White, A. J. R., 1979. Source of Granite Magmas. Geological Society of America, Boulder.
      Woldehaimanot, B., 2000. Tectonic Setting and Geochemical Characterisation of Neoproterozoic Volcanics and Granitoids from the Adobha Belt, Northern Eritrea. Journal of African Earth Sciences, 30(4):817-831. https://doi.org/10.1016/s0899-5362(00)00054-3
      Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites:Recognition and Research. Science in China (Series D), 47(7):745-765 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dizhixb201708010
      Xiang, P., Wang, J. X., 2013. Ore Geology Character and Type of Koka Gold Deposit, Eritrea. Acta Mineralogica Sinica, (S2):1067-1068 (in Chinese with English abstract).
      Xu, B. L., Yan, G. H., Zhang, C., et al., 1998. Petrological Subdivision and Source Material of A-Type Granites. Earth Science Frontiers, 5(3):113-124 (in Chinese with English abstract).
      Yan, J. M., Sun, G. S., Sun, F. Y., et al., 2019. Geochronology, Geochemistry, and Hf Isotopic Compositions of Monzogranites and Mafic-Ultramafic Complexes in the Maxingdawannan Area, Eastern Kunlun Orogen, Western China:Implications for Magma Sources, Geodynamic Setting, and Petrogenesis. Journal of Earth Science, 30(2):335-347. https://doi.org/10.1007/s12583-018-1203-8
      Yu, Y. S., Gao, Y., Yang, Z. S., et al., 2011. Zircon LA-ICP-MS U-Pb Dating and Geochemistry of Intrusive Rocks from Gunjiu Iron Deposit in the Nixiong Ore Field, Coqen, Tibet. Acta Petrologica Sinica, 27(7):1949-1960 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201107004
      Zhang, Q., Jin, W. J., Li, C. D., et al., 2010. Revisiting the New Classification of Granitic Rocks Based on Whole-Rock Sr and Yb Contents:Index. Acta Petrologica Sinica, 26(4):985-1015 (in Chinese with English abstract).
      胡培远, 李才, 吴彦旺, 等, 2016.青藏高原古特提斯洋早石炭世弧后拉张:来自A型花岗岩的证据.岩石学报, 32(4):1219-1231. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201604020
      刘彬, 马昌前, 郭盼, 等, 2013.东昆仑中泥盆世A型花岗岩的确定及其构造意义.地球科学, 38(5):947-962. doi: 10.3799/dqkx.2013.093
      刘昌实, 陈小明, 陈培荣, 等, 2003. A型岩套的分类、判别标志和成因.高校地质学报, 9(4):573-591 http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200304011
      王强, 赵振华, 熊小林, 2000.桐柏-大别造山带燕山晚期A型花岗岩的厘定.岩石矿物学杂志, 19(4):297-306 doi: 10.3969/j.issn.1000-6524.2000.04.002
      王艺龙, 李艳军, 魏俊浩, 等, 2018.东昆仑五龙沟地区晚志留世A型花岗岩成岩:U-Pb年代学、地球化学、Nd及Hf同位素制约.地球科学, 43(4):1219-1236 doi: 10.3799/dqkx.2018.717
      吴福元, 刘小驰, 纪伟强, 等, 2017.高分异花岗岩的识别与研究.中国科学(D辑), 47(7):745-765. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201707001
      向鹏, 王建雄, 2013.厄立特里亚Koka金矿地质特征及矿床类型.矿物学报, (S2):1067-1068. http://d.old.wanfangdata.com.cn/Conference/8301188
      许保良, 阎国翰, 张臣, 等, 1998. A型花岗岩的岩石学亚类及其物质来源.地学前缘, 5(3):113-124. doi: 10.3321/j.issn:1005-2321.1998.03.011
      于玉帅, 高原, 杨竹森, 等, 2011.西藏措勤尼雄矿田滚纠铁矿侵入岩LA-ICP-MS锆石U-Pb年龄与地球化学特征.岩石学报, 27(7):1949-1960 http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107004
      张旗, 金惟俊, 李承东, 等, 2010.再论花岗岩按照Sr-Yb的分类:标志.岩石学报, 26(4):985-1015. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201004001
    • Relative Articles

    • dqkx-45-1-156-Table1-3.pdf
    • Cited by

      Periodical cited type(14)

      1. 向文帅,吴颖,赵凯,曾国平,姜军胜,张紫程,白洋,张元培,罗军强,郑雄伟. 厄立特里亚GASH金矿集区地球化学特征及信息提取. 西北地质. 2024(02): 184-196 .
      2. 曾国平,王建雄,向文帅,张紫程,姜军胜,向鹏. 厄立特里亚西部新元古代岛弧花岗岩对东非造山带构造演化的指示意义. 西北地质. 2024(02): 159-173 .
      3. 向文帅,姜军胜,赵凯,曾国平,Ermias Yohannes,Tesfai Berhe. 地球化学块体理论在厄立特里亚铜资源潜力预测中的应用. 华南地质. 2024(01): 63-74 .
      4. 赵磊,袁帅,华北,胡兆国,魏正宇,李宁,孙峰,李建委,柳森,侯荣娜. 内蒙古东乌珠穆沁旗宝力高庙组流纹岩年代学、地球化学特征及地质意义. 新疆地质. 2024(03): 347-357 .
      5. 周佐民,李勇,刘晓阳,吴兴源. 苏丹红海州新元古代A型花岗岩的地球化学特征及构造意义. 华北地质. 2023(01): 71-79+86 .
      6. 郑雄伟,查亚,张芷宜,王俊锋,杨晟. 厄立特里亚Wina—Daga地区水系沉积物地球化学特征与找矿预测. 地质论评. 2023(S1): 227-229 .
      7. 周杰虎,陶兴雄,刘学龙,李守奎,周云满,魏志毅,曹振梁,李方兰,陆波德,刘雪. 滇西北红牛—红山铜矿床斑岩锆石U-Pb年龄、Hf同位素及地球化学特征. 地质论评. 2023(05): 1719-1740 .
      8. 胡鹏,任军平,向鹏,古阿雷,王建雄,王杰,吴大天,向文帅,孙凯,赵凯,刘晓阳,姜军胜,曾威,曾国平,张航,刘江涛,周佐民. 非洲大陆构造单元划分. 地质通报. 2022(01): 1-18 .
      9. 周桐,孙珍军,于赫楠,王承洋,刘广虎. 内蒙古浩布高铅锌矿床小罕山岩体年代学、Hf同位素及地球化学特征. 现代地质. 2022(01): 282-294 .
      10. 曾国平,王建雄,向文帅,童喜润,邵鑫,胡鹏,吴发富,姜军胜,向鹏. 厄立特里亚中部Adi Keyh A型流纹岩成因及地质意义. 华南地质. 2022(01): 157-173 .
      11. 向文帅,赵凯,张紫程. 厄立特里亚Augaro金矿床碳氢氧硫同位素特征及其成因意义. 地质学报. 2021(04): 1284-1291 .
      12. 向文帅,姜军胜,雷义均,赵凯. 埃塞俄比亚西部布雷地区A型花岗岩成因及地质意义. 地球科学. 2021(07): 2299-2310 . 本站查看
      13. 曹龙. 金矿井下采矿技术及方法的选择. 世界有色金属. 2020(02): 40-41 .
      14. 华北,高雪,胡兆国,梅贞华,张之武,孟银生,张保涛,赵磊. 兴蒙造山带西段乌珠新乌苏花岗岩岩石成因和构造背景:地球化学、U-Pb年代学和Sr-Nd-Hf同位素约束. 岩石学报. 2020(05): 1426-1444 .

      Other cited types(1)

    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)

      Article views (3456) PDF downloads(79) Cited by(15)
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return