• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 10
    Nov.  2019
    Turn off MathJax
    Article Contents
    Ren Jiangbo, Deng Xiguang, Deng Yinan, He Gaowen, Wang Fenlian, Yao Huiqiang, 2019. Rare Earth Element Characteristics and Its Geological Implications for Seawater from Cobalt-Rich Ferromanganese Crust Exploration Contract Area of China. Earth Science, 44(10): 3529-3540. doi: 10.3799/dqkx.2018.258
    Citation: Ren Jiangbo, Deng Xiguang, Deng Yinan, He Gaowen, Wang Fenlian, Yao Huiqiang, 2019. Rare Earth Element Characteristics and Its Geological Implications for Seawater from Cobalt-Rich Ferromanganese Crust Exploration Contract Area of China. Earth Science, 44(10): 3529-3540. doi: 10.3799/dqkx.2018.258

    Rare Earth Element Characteristics and Its Geological Implications for Seawater from Cobalt-Rich Ferromanganese Crust Exploration Contract Area of China

    doi: 10.3799/dqkx.2018.258
    • Received Date: 2018-12-28
    • Publish Date: 2019-11-11
    • The contents of rare earth elements and yttrium (REY) are determined using ICP-MS spectrometry in 34 seawater samples obtained from various depths from Caiwei Guyot and Weijia Guyot in western Pacific. Based on the data, the vertical profile of ∑REY content of seawater column are established in cobalt-rich ferromanganese crust exploration contract area of China. The contents of rare earth element in seawater increase gradually with the water depth. The ∑ REY contents range from 14.0×10-12 to 65.5×10-12, with an average of 31.94×10-12. Both the absolute content and relative content of Y are high, ranging from 6.0×10-12 to 24.1×10-12, with mean (Y/Ho)N value of 1.98, followed by La, with content ranging from 1.8×10-12 to 11.6×10-12. Ce is relatively low, with contents ranging from 2.4×10-12 to 8.8×10-12. And the δCe is from 0.33 to 1.03, with mean value of 0.66. The NASC-normalized REY patterns show left mode, with mean (La/Yb)N value of 0.71, obvious negative Ce anomalies, positive Y anomaly and no obvious Eu anomaly. Aqueous cobalt-rich ferromanganese crust is widely distributed in the study area, whose rare earth elements and other components are derived from seawater. The rare earth content of cobalt-rich crusts is 6-7 orders of magnitude higher than that of seawater, while NASC-normalized REY patterns of cobalt-rich ferromanganese crust show remarkable positive Ce and negative Y anomaly. This coupling relationship indicates that cobalt-rich ferromanganese crust components are selective for the cleaning rare earth elements of sea water, causing seawater rare earth anomaly. Both the phosphate rock developed on the seamounts and the phosphate components in the deep mud of the surrounding basin have high rare earth contents and a rare earth pattern similar to that of seawater. These phenomena indicate that the marine phosphate is not fractionated but inherited the REE patterns of seawater. The unique characteristics of REE patterns of seawater are the result of the balance between supply and consumption. Ferromanganese oxide and marine phosphate are two typical marine autogenic components, which are essential for the formation of REE patterns of seawater.

       

    • loading
    • Albarède, F., Simonetti, A., Vervoort, J. D., et al., 1998. A Hf-Nd Isotopic Correlation in Ferromanganese Nodules. Geophysical Research Letters, 25(20): 3895-3898. https://doi.org/10.1029/1998gl900008
      Alibo, D.S., Nozaki, Y., 1999. Rare Earth Elements in Seawater: Particle Association, Shale-Normalization, and Ce Oxidation. Geochimica et Cosmochimica Acta, 63(3-4): 363-372. https://doi.org/10.1016/s0016-7037(98)00279-8
      Banner, J.L., 2004. Radiogenic Isotopes: Systematics and Applications to Earth Surface Processes and Chemical Stratigraphy. Earth-Science Reviews, 65(3-4): 141-194. https://doi.org/10.1016/s0012-8252(03)00086-2
      Bau, M., Koschinsky, A., 2006. Hafnium and Neodymium Isotopes in Seawater and in Ferromanganese Crusts: The "Element Perspective". Earth and Planetary Science Letters, 241(3-4): 952-961. https://doi.org/10.1016/j.epsl.2005.09.067
      Bertram, C.J., Elderfield, H., 1993. The Geochemical Balance of the Rare Earth Elements and Neodymium Isotopes in the Oceans. Geochimica et Cosmochimica Acta, 57(9): 1957-1986. https://doi.org/10.1016/0016-7037(93)90087-d
      Byrne, R.H., Kim, K. H., 1990. Rare Earth Element Scavenging in Seawater. Geochimica et Cosmochimica Acta, 54(10): 2645-2656. https://doi.org/10.1016/0016-7037(90)90002-3
      Byrne, R.H., Kim, K. H., 1993. Rare Earth Precipitation and Coprecipitation Behavior: The Limiting Role of PO43- on Dissolved Rare Earth Concentrations in Seawater. Geochimica et Cosmochimica Acta, 57(3): 519-526. https://doi.org/10.1016/0016-7037(93)90364-3
      Cui, Y.C., Shi, X.F., Liu, J.H., et al., 2008.Effects of Phosphatization on the Elemental Association of Cobalt-Rich Crusts.Geological Science and Technology Information, 27(3):61-67(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200803009
      De Baar, H.J.W., Bacon, M. P., Brewer, P. G., et al., 1985. Rare Earth Elements in the Pacific and Atlantic Oceans. Geochimica et Cosmochimica Acta, 49(9): 1943-1959. https://doi.org/10.1016/0016-7037(85)90089-4
      Dubinin, A.V., 2000. Geochemistry of Rare Earth Elements in Oceanic Phillipsites. Lithology and Mineral Resources, 35(2): 101-108. https://doi.org/10.1007/bf02782672
      Elderfield, H., Greaves, M.J., 1982. The Rare Earth Elements in Seawater. Nature, 296(5854): 214-219. https://doi.org/10.1038/296214a0
      Greaves, M.J., Elderfield, H., Sholkovitz, E. R., 1999. Aeolian Sources of Rare Earth Elements to the Western Pacific Ocean. Marine Chemistry, 68(1-2): 31-38. https://doi.org/10.1016/s0304-4203(99)00063-8
      Greaves, M.J., Rudnicki, M., Elderfield, H., 1991. Rare Earth Elements in the Mediterranean Sea and Mixing in the Mediterranean Outflow. Earth and Planetary Science Letters, 103(1-4): 169-181. https://doi.org/10.1016/0012-821x(91)90158-e
      Halbach, P., Segl, M., Puteanus, D., et al., 1983. Co-Fluxes and Growth Rates in Ferromanganese Deposits from Central Pacific Seamount Areas. Nature, 304(5928): 716-719. https://doi.org/10.1038/304716a0
      Hein, J.R., Conrad, T.A., Frank, M., et al., 2012. Copper-Nickel-Rich, Amalgamated Ferromanganese Crust-Nodule Deposits from Shatsky Rise, NW Pacific. Geochemistry, Geophysics, Geosystems, 13(10): 1-23. https://doi.org/10.1029/2012gc004286
      Hein, J.R., Yeh, H.W., Gunn, S.H., et al., 1993. Two Major Cenozoic Episodes of Phosphogenesis Recorded in Equatorial Pacific Seamount Deposits. Paleoceanography, 8(2): 293-311. https://doi.org/10.1029/93pa00320
      Jonasson, R.G., Bancroft, G.M., Nesbitt, H. W., 1985. Solubilities of some Hydrous REE Phosphates with Implications for Diagenesis and Sea Water Concentrations. Geochimica et Cosmochimica Acta, 49(10): 2133-2139. https://doi.org/10.1016/0016-7037(85)90071-7
      Kato, Y., Fujinaga, K., Nakamura, K., et al., 2011. Deep-Sea Mud in the Pacific Ocean as a Potential Resource for Rare-Earth Elements. Nature Geoscience, 4(8): 535-539. https://doi.org/10.1038/ngeo1185
      Klemm, V., Levasseur, S., Frank, M., et al., 2005. Osmium Isotope Stratigraphy of a Marine Ferromanganese Crust. Earth and Planetary Science Letters, 238(1-2): 42-48. https://doi.org/10.1016/j.epsl.2005.07.016
      Kon, Y., Hoshino, M., Sanematsu, K., et al., 2014. Geochemical Characteristics of Apatite in Heavy REE-Rich Deep-Sea Mud from Minami-Torishima Area, Southeastern Japan. Resource Geology, 64(1): 47-57. https://doi.org/10.1111/rge.12026
      Koppers, A.A.P., Staudigel, H., Pringle, M. S., et al., 2003. Short-Lived and Discontinuous Intraplate Volcanism in the South Pacific: Hot Spots or Extensional Volcanism?. Geochemistry, Geophysics, Geosystems, 4(10): 1-49. https://doi.org/10.1029/2003gc000533
      Koschinsky, A., Stascheit, A., Bau, M., et al., 1997. Effects of Phosphatization on the Geochemical and Mineralogical Composition of Marine Ferromanganese Crusts. Geochimica et Cosmochimica Acta, 61(19): 4079-4094. https://doi.org/10.1016/s0016-7037(97)00231-7
      Lécuyer, C., Reynard, B., Grandjean, P., 2004. Rare Earth Element Evolution of Phanerozoic Seawater Recorded in Biogenic Apatites. Chemical Geology, 204(1-2): 63-102. https://doi.org/10.1016/j.chemgeo.2003.11.003
      Ling, H.F., Burton, K.W., O'Nions, R.K., et al., 1997. Evolution of Nd and Pb Isotopes in Central Pacific Seawater from Ferromanganese Crusts. Earth and Planetary Science Letters, 146(1-2): 1-12. https://doi.org/10.1016/s0012-821x(96)00224-5
      Liu, X. W., Byrne, R. H., 1997. Rare Earth and Yttrium Phosphate Solubilities in Aqueous Solution. Geochimica et Cosmochimica Acta, 61(8): 1625-1633. https://doi.org/10.1016/s0016-7037(97)00037-9
      Liu, Y.G., Du, D.W., Li, Z.S., et al., 2009.Estimation of Polymetallic Nodule Distribution and Resource Quantity in the CC Zone and Its Adjacent Areas of the Pacific Ocean.Advances in Marine Science, 27(3):342-350(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbhhy200903007
      Ma, W.L., Yang, K.H., Bao, G.S., et al., 2014.Spatial Distribution Study of Cobalt-Rich Crusts Ore Formation on the Central Pacific Seamount.Acta Oceanologica Sinica, 36(7):77-89(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hyxb201407009
      Machida, S., Fujinaga, K., et al., 2016. Geology and Geochemistry of Ferromanganese Nodules in the Japanese Exclusive Economic Zone around Minamitorishima Island. Geochemical Journal, 50(6): 539-555. https://doi.org/10.2343/geochemj.2.0419
      McArthur, J.M., Walsh, J. N., 1984. Rare-Earth Geochemistry of Phosphorites. Chemical Geology, 47(3/4): 191-220. https://doi.org/10.1016/0009-2541(84)90126-8
      Müller, R.D., Sdrolias, M., Gaina, C., et al., 2008. Age, Spreading Rates, and Spreading Asymmetry of the World's Ocean Crust. Geochemistry, Geophysics, Geosystems, 9(4): 1-42. https://doi.org/10.1029/2007gc001743
      Pan, J.H., Liu, S.Q., Yang, Y., et al., 2002.Research on Geochemical Characteristics of Major, Trace and Rare-Earth Elements in Phosphates from the West Pacific Seamounts.Geological Review, 48(5):534-541(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000005892
      Ren, J.B., He, G.W., Yao, H.Q., et al., 2016.Geochemistry and Significance of REE and PGE of the Cobalt-Rich Crusts from West Pacific Ocean Seamounts.Earth Science, 41(10):1745-1757(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201610010
      Ren, J.B., He, G.W., Yao, H.Q., et al., 2017a. The Effects of Phosphatization on the REY of Co-rich Fe-Mn Crusts. Marine Geology & Quaternary Geology, 37(2): 33-43(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201702005
      Ren, J.B., He, G.W., Zhu, K.C., et al., 2017b.REY-Rich Phosphate and Its Effects on the Deep-Sea Mud Mineralization. Acta Geologica Sinica, 91(6):1312-1325(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201706011
      Ren, J.B., Wang, L.L., Yan, Q.S., et al., 2013.Geochemical Characteristics and Its Geological Implications for Basalts in Volcaniclastic Rock from Daimao Seamount.Earth Science, 38(Suppl.1):10-20(in Chinese with English abstract).
      Ren, J.B., Yao, H.Q., Zhu, K.C., et al., 2015.Enrichment Mechanism of Rare Earth Elements and Yttrium in Deep-Sea Mud of Clarion-Clipperton Region.Earth Science Frontiers, 22(4):200-211(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201504021
      Ren, X.W., Shi, X.F., Zhu, A.M., et al., 2011.Existing Phase of Rare Earth Elements in Co-Rich Fe-Mn Crusts from Seamount MK of Magellan Seamount Cluster.Journal of Jilin University(Earth Science Edition), 41(3):707-714(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201103012
      Shields, G.A., Webb, G. E., 2004. Has the REE Composition of Seawater Changed over Geological Time? Chemical Geology, 204(1-2): 103-107. https://doi.org/10.1016/j.chemgeo.2003.09.010
      Stichel, T., Frank, M., Rickli, J., et al., 2012. The Hafnium and Neodymium Isotope Composition of Seawater in the Atlantic Sector of the Southern Ocean. Earth and Planetary Science Letters, 317: 282-294. https://doi.org/10.1016/j.epsl.2011.11.025
      Tao, C.H., Li, H. M., Huang, W., et al., 2011. Mineralogical and Geochemical Features of Sulfide Chimneys from the 49°39′E Hydrothermal Field on the Southwest Indian Ridge and Their Geological Inferences. Chinese Science Bulletin, 56(28-29): 2413-2423(in Chinese). doi: 10.1360/csb2011-56-28-29-2413
      Toyoda, K., Tokonami, M., 1990. Diffusion of Rare-Earth Elements in Fish Teeth from Deep-Sea Sediments. Nature, 345(6276): 607-609. https://doi.org/10.1038/345607a0
      van de Flierdt, T., Frank, M., Lee, D. C., et al., 2004. New Constraints on the Sources and Behavior of Neodymium and Hafnium in Seawater from Pacific Ocean Ferromanganese Crusts. Geochimica et Cosmochimica Acta, 68(19): 3827-3843. https://doi.org/10.1016/j.gca.2004.03.009
      Yasukawa, K., Liu, H., Fujinaga, K., et al., 2014. Geochemistry and Mineralogy of REY-Rich Mud in the Eastern Indian Ocean. Journal of Asian Earth Sciences, 93: 25-36. https://doi.org/10.1016/j.jseaes.2014.07.005
      Zeng, Z.G., Chen, D.G., Yin, X.B., et al., 2009. Elemental and Isotopic Compositions of the Hydrothermal Sulfide on the East Pacific Rise near 13 N. Science China Ser.D Earth Science, 39(12): 1780-1794(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG201002009.htm
      Zhang, F.Y., Zhang, W.Y., Ren, X.W., et al., 2015.Resource Estimation of Co-Rich Crusts of Seamounts in the Three Oceans.Haiyang Xuebao, 37(1):88-105(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hyxb201501010
      Zhang, F.Y., Zhang, W.Y., Zhu, K.C., et al., 2011.Resource Estimation of Co-Rich Crusts of Seamounts in the Pacific.Earth Science, 36(1):1-11(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201101001
      Zhang, J., Nozaki, Y., 1996. Rare Earth Elements and Yttrium in Seawater: ICP-MS Determinations in the East Caroline, Coral Sea, and South Fiji Basins of the Western South Pacific Ocean. Geochimica et Cosmochimica Acta, 60(23): 4631-4644. https://doi.org/10.1016/s0016-7037(96)00276-1
      Zhao, K.D., Jiang, S.Y., Zheng, X.Y., et al., 2009.Nd Isotope Evolution of Ocean Waters and Implications for Paleo-Ocean Circulation.Earth Science Frontiers, 16(5):160-171(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy200905016
      Zheng, T.L., Deng, Y.M., Lu, Z.J., et al., 2017.Geochemistry and Implications of Rare Earth Elements in Arsenic-Affected Shallow Aquifer from Jianghan Plain, Central China.Earth Science, 42(5):693-706(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705005
      Zhu, K.C., Ren, J.B., Wang, H.F., et al., 2015.Enrichment Mechanism of REY and Geochemical Characteristics of REY-Rich Pelagic Clay from the Central Pacific. Earth Science, 40(6):1052-1060(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201506009
      崔迎春, 石学法, 刘季花, 等, 2008.磷酸盐化作用对富钴结壳元素相关性的影响.地质科技情报, 27(3):61-67. doi: 10.3969/j.issn.1000-7849.2008.03.009
      刘永刚, 杜德文, 李钟山, 等, 2009.太平洋CC区及周边多金属结核分布及资源量预测.海洋科学进展, 27(3):342-350. doi: 10.3969/j.issn.1671-6647.2009.03.007
      马维林, 杨克红, 包更生, 等, 2014.中太平洋海山富钴结壳成矿的空间分布规律研究.海洋学报(中文版), 36(7):77-89. doi: 10.3969/j.issn.0253-4193.2014.07.009
      潘家华, 刘淑琴, 杨忆, 等, 2002.西太平洋海山磷酸盐的常量、微量和稀土元素地球化学研究.地质论评, 48(5):534-541. doi: 10.3321/j.issn:0371-5736.2002.05.012
      任江波, 何高文, 姚会强, 等, 2016.西太平洋海山富钴结壳的稀土和铂族元素特征及其意义.地球科学, 41(10):1745-1757. http://d.old.wanfangdata.com.cn/Periodical/dqkx201610010
      任江波, 何高文, 姚会强, 等, 2017a.磷酸盐化对富钴结壳稀土元素的影响.海洋地质与第四纪地质, 37(2):32-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201702005
      任江波, 何高文, 朱克超, 等, 2017b.富稀土磷酸盐及其在深海成矿作用中的贡献.地质学报, 91(6):1312-1325. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201706011
      任江波, 王嘹亮, 鄢全树, 等, 2013.南海玳瑁海山玄武质火山角砾岩的地球化学特征及其意义.地球科学, 38(S1):10-20. http://d.old.wanfangdata.com.cn/Conference/8632487
      任江波, 姚会强, 朱克超, 等, 2015.稀土元素及钇在东太平洋CC区深海泥中的富集特征与机制.地学前缘, 22(4):200-211. http://d.old.wanfangdata.com.cn/Periodical/dxqy201504021
      任向文, 石学法, 朱爱美, 等, 2011.麦哲伦海山群MK海山富钴结壳稀土元素的赋存相态.吉林大学学报(地球科学版), 41(3):707-714. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201103012
      陶春辉, 李怀明, 黄威, 等, 2011.西南印度洋脊49°39′E热液区硫化物烟囱体的矿物学和地球化学特征及其地质意义.科学通报, 56(28-29): 2413-2423. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201128009
      曾志刚, 陈代庚, 殷学博, 等, 2009.东太平洋海隆13°N附近热液硫化物中的元素、同位素组成及其变化.中国科学(D辑:地球科学), 39(12):1780-1794. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200912014
      张富元, 章伟艳, 任向文, 等, 2015.全球三大洋海山钴结壳资源量估算.海洋学报, 37(1):88-105. doi: 10.3969/j.issn.0253-4193.2015.01.010
      张富元, 章伟艳, 朱克超, 等, 2011.太平洋海山钴结壳资源量估算.地球科学, 36(1):1-11. doi: 10.3969/j.issn.1672-6561.2011.01.001
      赵葵东, 蒋少涌, 郑新源, 等, 2009.海洋Nd同位素演化及古洋流循环示踪研究.地学前缘, 16(5):160-171. doi: 10.3321/j.issn:1005-2321.2009.05.016
      郑天亮, 邓娅敏, 鲁宗杰, 等, 2017.江汉平原浅层含砷地下水稀土元素特征及其指示意义.地球科学, 42(5):693-706. doi: 10.3799/dqkx.2017.057
      朱克超, 任江波, 王海峰, 等, 2015.太平洋中部富REY深海粘土的地球化学特征及REY富集机制.地球科学, 40(6):1052-1060. doi: 10.3799/dqkx.2015.087
    • dqkx-44-10-3529-TableS1.pdf
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)

      Article views (6046) PDF downloads(67) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return