Citation: | Chen Wei, Song Yang, Qu Xiaoming, Sun Miao, Ding Jishun, Ma Xudong, 2020. MMEs in the Tangjiangqiongguo Pluton in the North Lhasa Block Formed by Magma Mixing of Different Episodes of the Same Sourced Magma: A New Petrogenetic Model for the MMEs. Earth Science, 45(1): 17-30. doi: 10.3799/dqkx.2018.263 |
Baker, D. R., 1989. Tracer Versus Trace Element Diffusion: Diffusional Decoupling of Sr Concentration from Sr Isotope Composition. Geochimica et Cosmochimica Acta, 53(11): 3015-3023. https://doi.org/10.1016/0016-7037(89)90177-4
|
Barbarin, B., 2005. Mafic Magmatic Enclaves and Mafic Rocks Associated with Some Granitoids of the Central Sierra Nevada Batholith, California: Nature, Origin, and Relations with the Hosts. Lithos, 80(1-4): 155-177. https://doi.org/10.1016/j.lithos.2004.05.010
|
Baxter, S., Feely, M., 2002. Magma Mixing and Mingling Textures in Granitoids: Examples from the Galway Granite, Connemara, Ireland. Mineralogy and Petrology, 76(1-2): 63-74. https://doi.org/10.1007/s007100200032
|
Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1-2): 243-258. https://doi.org/10.1016/s0012-821x(97)00040-x
|
Chappell, B. W., White, A. J. R., 1992. I- and S-Type Granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2): 1-26. https://doi.org/10.1017/s0263593300007720
|
Chappell, B. W., White, A. J. R., Williams, I. S., et al., 2000. Lachlan Fold Belt Granites Revisited: High‐ and Low‐Temperature Granites and Their Implications. Australian Journal of Earth Sciences, 47(1): 123-138. https://doi.org/10.1046/j.1440-0952.2000.00766.x
|
Chappell, B. W., White, A. J. R., Wyborn, D., 1987. The Importance of Residual Source Material (Restite) in Granite Petrogenesis. Journal of Petrology, 28(6): 1111-1138. https://doi.org/10.1093/petrology/28.6.1111
|
Chen, Y. D., Price, R. C., White, A. J. R., 1989. Inclusions in Three S-Type Granites from Southeastern Australia. Journal of Petrology, 30(5): 1181-1218. https://doi.org/10.1093/petrology/30.5.1181
|
Chen, B., Chen, Z. C., Jahn, B. M., 2009. Origin of Mafic Enclaves from the Taihang Mesozoic Orogen, North China Craton. Lithos, 110(1-4): 343-358. https://doi.org/10.1016/j.lithos.2009.01.015
|
Dahlquist, J. A., 2002. Mafic Microgranular Enclaves: Early Segregation from Metaluminous Magma (Sierra de Chepes), Pampean Ranges, NW Argentina. Journal of South American Earth Sciences, 15(6): 643-655. https://doi.org/10.1016/s0895-9811(02)00112-8
|
Didier, J., 1987. Contribution of Enclave Studies to the Understanding of Origin and Evolution of Granitic Magmas. Geologische Rundschau, 76(1): 41-50. https://doi.org/10.1007/bf01820572
|
Didier, J., Barbarin, B., 1991. Enclaves and Granite Petrology. Developments in Petrology. Elsevier Science Publishers, Amsterdam.
|
Donaire, T., Pascual, E., Pin, C., et al., 2005. Microgranular Enclaves as Evidence of Rapid Cooling in Granitoid Rocks: The Case of the Los Pedroches Granodiorite, Iberian Massif, Spain. Contributions to Mineralogy and Petrology, 149(3): 247-265. https://doi.org/10.1007/s00410-005-0652-0
|
Dong, H.W., Meng, Y.K., Xu, Z.Q., et al., 2019. Timing of Displacement along the YardoiDetachment Fault, Southern Tibet: Insights from Zircon U-Pb and Mica 40Ar-39Ar Geochronology. Journal of Earth Science, 30(3): 535-548. https://doi.org/10.1007/s12583-019-1223-z
|
Dong, X., Zhang, Z. M., Santosh, M., et al., 2011. Late Neoproterozoic Thermal Events in the Northern Lhasa Terrane, South Tibet: Zircon Chronology and Tectonic Implications. Journal of Geodynamics, 52(5): 389-405. https://doi.org/10.1016/j.jog.2011.05.002
|
Dorais, M. J., Whitney, J. A., Roden, M. F., 1990. Origin of Mafic Enclaves in the Dinkey Creek Pluton, Central Sierra Nevada Batholith, California. Journal of Petrology, 31(4): 853-881. https://doi.org/10.1093/petrology/31.4.853
|
Elhlou, S., Belousova, E., Griffin, W. L., et al., 2006. Trace Element and Isotopic Composition of GJ-Red Zircon Standard by Laser Ablation. Geochimica et Cosmochimica Acta, 70(18): A158. https://doi.org/10.1016/j.gca.2006.06.1383
|
Fujimaki, H., Tatsumoto, M., Aoki, K. I., 1984. Partition Coefficients of Hf, Zr, and REE between Phenocrysts and Groundmasses. Journal of Geophysical Research, 89(S02):B662. https://doi.org/10.1029/jb089is02p0b662
|
Giraud, A., Dupuy, C., Dostal, J., 1986. Behaviour of Trace Elements during Magmatic Processes in the Crust: Application to Acidic Volcanic Rocks of Tuscany (Italy). Chemical Geology, 57(3-4): 269-288. https://doi.org/10.1016/0009-2541(86)90054-9
|
Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/s0016-7037(99)00343-9
|
Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3-4): 237-269. https://doi.org/10.1016/s0024-4937(02)00082-8
|
Holden, P., Halliday, A. N., Ed Stephens, W., et al., 1991. Chemical and Isotopic Evidence for Major Mass Transfer between Mafic Enclaves and Felsic Magma. Chemical Geology, 92(1-3): 135-152. https://doi.org/10.1016/0009-2541(91)90053-t
|
Hou, K.J., Li, Y.H., Zou, T.R., et al., 2007. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200710025
|
Hu, D. G., 2005. SHRIMP Zircon U-Pb Age and Nd Isotopic Study on the Nyainqêntanglha Group in Tibet. Science in China (Series D), 48(9): 1377. https://doi.org/10.1360/04yd0183
|
Jiang, Y. H., Jin, G. D., Liao, S. Y., et al., 2010. Geochemical and Sr–Nd–Hf Isotopic Constraints on the Origin of Late Triassic Granitoids from the Qinling Orogen, Central China: Implications for a Continental Arc to Continent–Continent Collision. Lithos, 117(1-4): 183-197. https://doi.org/10.1016/j.lithos.2010.02.014
|
Jiang, Y. H., Ling, H. F., Jiang, S. Y., et al., 2005. Petrogenesis of a Late Jurassic Peraluminous Volcanic Complex and Its High-Mg, Potassic, Quenched Enclaves at Xiangshan, Southeast China. Journal of Petrology, 46(6): 1121-1154. https://doi.org/10.1093/petrology/egi012
|
Johnston, A. D., Wyllie, P. J., 1988. Interaction of Granitic and Basic Magmas: Experimental Observations on Contamination Processes at 10 kbar with H2O. Contributions to Mineralogy and Petrology, 98(3): 352-362. https://doi.org/10.1007/bf00375185
|
Kumar, S., Rino, V., 2006. Mineralogy and Geochemistry of Microgranular Enclaves in Palaeoproterozoic Malanjkhand Granitoids, Central India: Evidence of Magma Mixing, Mingling, and Chemical Equilibration. Contributions to Mineralogy and Petrology, 152(5): 591-609. https://doi.org/10.1007/s00410-006-0122-3
|
Lesher, C. E., 1994. Kinetics of Sr and Nd Exchange in Silicate Liquids: Theory, Experiments, and Applications to Uphill Diffusion, Isotopic Equilibration, and Irreversible Mixing of Magmas. Journal of Geophysical Research: Solid Earth, 99(B5): 9585-9604. https://doi.org/10.1029/94jb00469
|
Li, Z.L., Yang, J.S., Li, T.F., et al., 2019. Helium Isotopic Composition of the Songduo Eclogites in the Lhasa Terrane, Tibet: Information from the Deep Mantle. Journal of Earth Science, 30(3): 563-570. https://doi.org/10.1007/s12583-019-1226-9
|
Liu, L., Qiu, J. S., Li, Z., 2013. Origin of Mafic Microgranular Enclaves (MMEs) and Their Host Quartz Monzonites from the Muchen Pluton in Zhejiang Province, Southeast China: Implications for Magma Mixing and Crust-Mantle Interaction. Lithos, 160-161: 145-163. https://doi.org/10.1016/j.lithos.2012.12.005
|
Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4
|
Ludwig, K. R., 2003. Users Manualf or Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley.
|
Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101 < 0635:tdog > 2.3.co; 2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
|
Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
|
Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745
|
Qu, Y.G., Wang, Y.S., Duan, J.X., et al., 2002. The People's Republic of China Regional Geological Report 1:250 000 Duoba Sheet. China University of Geosciences Press, Wuhan (in Chinese).
|
Shellnutt, J. G., Jahn, B. M., Dostal, J., 2010. Elemental and Sr–Nd Isotope Geochemistry of Microgranular Enclaves from Peralkaline A-Type Granitic Plutons of the Emeishan Large Igneous Province, SW China. Lithos, 119(1-2): 34-46. https://doi.org/10.1016/j.lithos.2010.07.011
|
Shi, R. D., Yang, J. S., Xu, Z. Q., et al., 2008. The Bangong Lake Ophiolite (NW Tibet) and Its Bearing on the Tectonic Evolution of the Bangong-Nujiang Suture Zone. Journal of Asian Earth Sciences, 32(5-6): 438-457. https://doi.org/10.1016/j.jseaes.2007.11.011
|
Slaby, E., Martin, H., 2008. Mafic and Felsic Magma Interaction in Granites: The Hercynian Karkonosze Pluton (Sudetes, Bohemian Massif). Journal of Petrology, 49(2): 353-391. https://doi.org/10.1093/petrology/egm085
|
Söderlund, U., Patchett, P. J., Vervoort, J. D., et al., 2004. The 176Lu Decay Constant Determined by Lu–Hf and U–Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3-4): 311-324. https://doi.org/10.1016/s0012-821x(04)00012-3
|
Sun, M., Chen, W., Qu, X.M., et al., 2018. Petrogenesis of the Late Cretaceous Jiangba Volcanic Rocks and Its Indications for the Thinning of the Thickened Crust in Xiongmei Area, Tibet. Earth Science, 43(9):3234-3251 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201809022
|
Sun, G. M., Li, X. P., Duan, W. Y., et al., 2018. Metamorphic Characteristics and Tectonic Implications of the Kadui Blueschist in the Central Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Earth Science, 29(5): 1026-1039. https://doi.org/10.1007/s12583-018-0854-9
|
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
|
Vernon, R. H., 1984. Microgranitoid Enclaves in Granites-Globules of Hybrid Magma Quenched in a Plutonic Environment. Nature, 309(5967): 438-439. https://doi.org/10.1038/309438a0
|
White, R. V., Tarney, J., Kerr, A. C., et al., 1999. Modification of an Oceanic Plateau, Aruba, Dutch Caribbean: Implications for the Generation of Continental Crust. Lithos, 46(1): 43-68. https://doi.org/10.1016/s0024-4937(98)00061-9
|
Yang, T.L., Jiang, S.Y., 2015. Petrogenesis of Intermediate-Felsic Intrusive Rocks and Mafic Microgranular Enclaves (MMEs) from Dongleiwan Deposit in Jiurui Ore District, Jiangxi Province: Evidence from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Pb-Hf Isotopes. Earth Science, 40(12):2002-2030 (in Chinese with English abstract).
|
Zhang, L.L., Zhu, D.C., Zhao, Z.D., et al., 2011. Early Cretaceous Granitoids in Xainza, Tibet:Evidence of Slab Break-off. Acta Petrologica Sinica, 27(7):1938-1948 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107003
|
Zhang, K. J., 2004. Secular Geochemical Variations of the Lower Cretaceous Siliciclastic Rocks from Central Tibet (China) Indicate a Tectonic Transition from Continental Collision to Back-Arc Rifting. Earth and Planetary Science Letters, 229(1-2): 73-89. https://doi.org/10.1016/j.epsl.2004.10.030
|
Zhang, K. J., Li, Q. H., Yan, L. L., et al., 2017. Geochemistry of Limestones Deposited in Various Plate Tectonic Settings. Earth-Science Reviews, 167: 27-46. https://doi.org/10.1016/j.earscirev.2017.02.003
|
Zhang, K. J., Xia, B., Zhang, Y. X., et al., 2014. Central Tibetan Meso-Tethyan Oceanic Plateau. Lithos, 210-211: 278-288. https://doi.org/10.1016/j.lithos.2014.09.004
|
Zhang, K. J., Zhang, Y. X., Tang, X. C., et al., 2012. Late Mesozoic Tectonic Evolution and Growth of the Tibetan Plateau Prior to the Indo-Asian Collision. Earth-Science Reviews, 114(3-4): 236-249. https://doi.org/10.1016/j.earscirev.2012.06.001
|
Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2012. Origin and Paleozoic Tectonic Evolution of the Lhasa Terrane. Geological Journal of China Universities, 18(1):1-15 (in Chinese with English abstract).
|
Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454. https://doi.org/10.1016/j.gr.2012.02.002
|
Zhu, D. C., Zhao, Z. D., Niu, Y., et al., 2011. Lhasa Terrane in Southern Tibet Came from Australia. Geology, 39(8): 727-730. https://doi.org/10.1130/g31895.1
|
侯可军, 李延河, 邹天人, 等, 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10): 2595-2604. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200710025
|
曲永贵, 王永胜, 段建祥, 等, 2002.中华人民共和国区域地质调查报告1:250 000多巴幅.武汉:中国地质大学出版社.
|
孙渺, 陈伟, 曲晓明, 等, 2018.西藏雄梅地区晚白垩世江巴组火山岩岩石成因及对加厚地壳减薄的指示.地球科学, 43(9):3234-3251. doi: 10.3799/dqkx.2018.146
|
杨堂礼, 蒋少涌. 2015.江西九瑞矿集区东雷湾矿区中酸性侵入岩及其铁镁质包体的成因:锆石U-Pb年代学、地球化学与Sr-Nd-Pb-Hf同位素制约.地球科学, 40(12):2002-2020. doi: 10.3799/dqkx.2015.179
|
张亮亮, 朱弟成, 赵志丹, 等, 2011.西藏申扎早白垩世花岗岩类:板片断离的证据.岩石学报, 27(7): 1938-1948. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107003
|
朱弟成, 赵志丹, 牛耀龄, 等, 2012.拉萨地体的起源和古生代构造演化.高校地质学报, 18(1): 1-15. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201201001
|
![]() |
![]() |