• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 1
    Jan.  2020
    Turn off MathJax
    Article Contents
    Chen Wei, Song Yang, Qu Xiaoming, Sun Miao, Ding Jishun, Ma Xudong, 2020. MMEs in the Tangjiangqiongguo Pluton in the North Lhasa Block Formed by Magma Mixing of Different Episodes of the Same Sourced Magma: A New Petrogenetic Model for the MMEs. Earth Science, 45(1): 17-30. doi: 10.3799/dqkx.2018.263
    Citation: Chen Wei, Song Yang, Qu Xiaoming, Sun Miao, Ding Jishun, Ma Xudong, 2020. MMEs in the Tangjiangqiongguo Pluton in the North Lhasa Block Formed by Magma Mixing of Different Episodes of the Same Sourced Magma: A New Petrogenetic Model for the MMEs. Earth Science, 45(1): 17-30. doi: 10.3799/dqkx.2018.263

    MMEs in the Tangjiangqiongguo Pluton in the North Lhasa Block Formed by Magma Mixing of Different Episodes of the Same Sourced Magma: A New Petrogenetic Model for the MMEs

    doi: 10.3799/dqkx.2018.263
    • Received Date: 2018-07-03
    • Publish Date: 2020-01-15
    • This paper proposes a new petrogenetic model for the MMEs (mafic microgranular enclaves) based on a study on the Tangjiangqiongguo pluton in the middle part of the North Lhasa Block,Tibet. The MMEs found in the Tangjiangqiongguo host granitic diorites are hornblende diorites usually presenting axiolite and non-compactly cement with the host rock,with an apparent clearance plane with host rocks. The MMEs have higher Na2O,CaO,MgO and Fe2O3T contents than the host rocks. The MMEs have distinct REE characteristics from host rocks,with higher REE contents (except La and Ce) and weaker fractionation between LREE and HREE. Both the MMEs and host rocks show characteristics of arc rocks with enrichment in LILEs (large ion lithophile elements) Rb,Cs,K,etc.,and Th and U elements,but depletion in HFSEs (high field strength elements) Nb,Ta and Ti elements. Zircon LA-ICP-MS U-Pb dating yields a 113.9±1.0 Ma age and a 110±1.1 Ma age for the MMEs and host rocks,respectively. Although the MMEs are 4 Ma earlier than the host rocks,they have consistent zircon Lu-Hf isotopes. Synthesizing above petrography,geochemistry and isotopic evidence,we suggest the MMEs are derived from the same source rocks with host rocks. The MMEs experienced a weak plagioclase fractional crystallization,but the host rocks experienced a relatively strong hornblende fractional crystallization in respective secondary magma chamber. The differential magma of the host rock wrapped and carried the earlier formed MMEs (in semiplastic) to subsurface. The most probable petrogenetic model for the Tangjiangqiongguo MMEs mingling between magmas of different periods sourced from the same rock.

       

    • loading
    • Baker, D. R., 1989. Tracer Versus Trace Element Diffusion: Diffusional Decoupling of Sr Concentration from Sr Isotope Composition. Geochimica et Cosmochimica Acta, 53(11): 3015-3023. https://doi.org/10.1016/0016-7037(89)90177-4
      Barbarin, B., 2005. Mafic Magmatic Enclaves and Mafic Rocks Associated with Some Granitoids of the Central Sierra Nevada Batholith, California: Nature, Origin, and Relations with the Hosts. Lithos, 80(1-4): 155-177. https://doi.org/10.1016/j.lithos.2004.05.010
      Baxter, S., Feely, M., 2002. Magma Mixing and Mingling Textures in Granitoids: Examples from the Galway Granite, Connemara, Ireland. Mineralogy and Petrology, 76(1-2): 63-74. https://doi.org/10.1007/s007100200032
      Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1-2): 243-258. https://doi.org/10.1016/s0012-821x(97)00040-x
      Chappell, B. W., White, A. J. R., 1992. I- and S-Type Granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2): 1-26. https://doi.org/10.1017/s0263593300007720
      Chappell, B. W., White, A. J. R., Williams, I. S., et al., 2000. Lachlan Fold Belt Granites Revisited: High‐ and Low‐Temperature Granites and Their Implications. Australian Journal of Earth Sciences, 47(1): 123-138. https://doi.org/10.1046/j.1440-0952.2000.00766.x
      Chappell, B. W., White, A. J. R., Wyborn, D., 1987. The Importance of Residual Source Material (Restite) in Granite Petrogenesis. Journal of Petrology, 28(6): 1111-1138. https://doi.org/10.1093/petrology/28.6.1111
      Chen, Y. D., Price, R. C., White, A. J. R., 1989. Inclusions in Three S-Type Granites from Southeastern Australia. Journal of Petrology, 30(5): 1181-1218. https://doi.org/10.1093/petrology/30.5.1181
      Chen, B., Chen, Z. C., Jahn, B. M., 2009. Origin of Mafic Enclaves from the Taihang Mesozoic Orogen, North China Craton. Lithos, 110(1-4): 343-358. https://doi.org/10.1016/j.lithos.2009.01.015
      Dahlquist, J. A., 2002. Mafic Microgranular Enclaves: Early Segregation from Metaluminous Magma (Sierra de Chepes), Pampean Ranges, NW Argentina. Journal of South American Earth Sciences, 15(6): 643-655. https://doi.org/10.1016/s0895-9811(02)00112-8
      Didier, J., 1987. Contribution of Enclave Studies to the Understanding of Origin and Evolution of Granitic Magmas. Geologische Rundschau, 76(1): 41-50. https://doi.org/10.1007/bf01820572
      Didier, J., Barbarin, B., 1991. Enclaves and Granite Petrology. Developments in Petrology. Elsevier Science Publishers, Amsterdam.
      Donaire, T., Pascual, E., Pin, C., et al., 2005. Microgranular Enclaves as Evidence of Rapid Cooling in Granitoid Rocks: The Case of the Los Pedroches Granodiorite, Iberian Massif, Spain. Contributions to Mineralogy and Petrology, 149(3): 247-265. https://doi.org/10.1007/s00410-005-0652-0
      Dong, H.W., Meng, Y.K., Xu, Z.Q., et al., 2019. Timing of Displacement along the YardoiDetachment Fault, Southern Tibet: Insights from Zircon U-Pb and Mica 40Ar-39Ar Geochronology. Journal of Earth Science, 30(3): 535-548. https://doi.org/10.1007/s12583-019-1223-z
      Dong, X., Zhang, Z. M., Santosh, M., et al., 2011. Late Neoproterozoic Thermal Events in the Northern Lhasa Terrane, South Tibet: Zircon Chronology and Tectonic Implications. Journal of Geodynamics, 52(5): 389-405. https://doi.org/10.1016/j.jog.2011.05.002
      Dorais, M. J., Whitney, J. A., Roden, M. F., 1990. Origin of Mafic Enclaves in the Dinkey Creek Pluton, Central Sierra Nevada Batholith, California. Journal of Petrology, 31(4): 853-881. https://doi.org/10.1093/petrology/31.4.853
      Elhlou, S., Belousova, E., Griffin, W. L., et al., 2006. Trace Element and Isotopic Composition of GJ-Red Zircon Standard by Laser Ablation. Geochimica et Cosmochimica Acta, 70(18): A158. https://doi.org/10.1016/j.gca.2006.06.1383
      Fujimaki, H., Tatsumoto, M., Aoki, K. I., 1984. Partition Coefficients of Hf, Zr, and REE between Phenocrysts and Groundmasses. Journal of Geophysical Research, 89(S02):B662. https://doi.org/10.1029/jb089is02p0b662
      Giraud, A., Dupuy, C., Dostal, J., 1986. Behaviour of Trace Elements during Magmatic Processes in the Crust: Application to Acidic Volcanic Rocks of Tuscany (Italy). Chemical Geology, 57(3-4): 269-288. https://doi.org/10.1016/0009-2541(86)90054-9
      Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/s0016-7037(99)00343-9
      Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3-4): 237-269. https://doi.org/10.1016/s0024-4937(02)00082-8
      Holden, P., Halliday, A. N., Ed Stephens, W., et al., 1991. Chemical and Isotopic Evidence for Major Mass Transfer between Mafic Enclaves and Felsic Magma. Chemical Geology, 92(1-3): 135-152. https://doi.org/10.1016/0009-2541(91)90053-t
      Hou, K.J., Li, Y.H., Zou, T.R., et al., 2007. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200710025
      Hu, D. G., 2005. SHRIMP Zircon U-Pb Age and Nd Isotopic Study on the Nyainqêntanglha Group in Tibet. Science in China (Series D), 48(9): 1377. https://doi.org/10.1360/04yd0183
      Jiang, Y. H., Jin, G. D., Liao, S. Y., et al., 2010. Geochemical and Sr–Nd–Hf Isotopic Constraints on the Origin of Late Triassic Granitoids from the Qinling Orogen, Central China: Implications for a Continental Arc to Continent–Continent Collision. Lithos, 117(1-4): 183-197. https://doi.org/10.1016/j.lithos.2010.02.014
      Jiang, Y. H., Ling, H. F., Jiang, S. Y., et al., 2005. Petrogenesis of a Late Jurassic Peraluminous Volcanic Complex and Its High-Mg, Potassic, Quenched Enclaves at Xiangshan, Southeast China. Journal of Petrology, 46(6): 1121-1154. https://doi.org/10.1093/petrology/egi012
      Johnston, A. D., Wyllie, P. J., 1988. Interaction of Granitic and Basic Magmas: Experimental Observations on Contamination Processes at 10 kbar with H2O. Contributions to Mineralogy and Petrology, 98(3): 352-362. https://doi.org/10.1007/bf00375185
      Kumar, S., Rino, V., 2006. Mineralogy and Geochemistry of Microgranular Enclaves in Palaeoproterozoic Malanjkhand Granitoids, Central India: Evidence of Magma Mixing, Mingling, and Chemical Equilibration. Contributions to Mineralogy and Petrology, 152(5): 591-609. https://doi.org/10.1007/s00410-006-0122-3
      Lesher, C. E., 1994. Kinetics of Sr and Nd Exchange in Silicate Liquids: Theory, Experiments, and Applications to Uphill Diffusion, Isotopic Equilibration, and Irreversible Mixing of Magmas. Journal of Geophysical Research: Solid Earth, 99(B5): 9585-9604. https://doi.org/10.1029/94jb00469
      Li, Z.L., Yang, J.S., Li, T.F., et al., 2019. Helium Isotopic Composition of the Songduo Eclogites in the Lhasa Terrane, Tibet: Information from the Deep Mantle. Journal of Earth Science, 30(3): 563-570. https://doi.org/10.1007/s12583-019-1226-9
      Liu, L., Qiu, J. S., Li, Z., 2013. Origin of Mafic Microgranular Enclaves (MMEs) and Their Host Quartz Monzonites from the Muchen Pluton in Zhejiang Province, Southeast China: Implications for Magma Mixing and Crust-Mantle Interaction. Lithos, 160-161: 145-163. https://doi.org/10.1016/j.lithos.2012.12.005
      Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4
      Ludwig, K. R., 2003. Users Manualf or Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley.
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101 < 0635:tdog > 2.3.co; 2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
      Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745
      Qu, Y.G., Wang, Y.S., Duan, J.X., et al., 2002. The People's Republic of China Regional Geological Report 1:250 000 Duoba Sheet. China University of Geosciences Press, Wuhan (in Chinese).
      Shellnutt, J. G., Jahn, B. M., Dostal, J., 2010. Elemental and Sr–Nd Isotope Geochemistry of Microgranular Enclaves from Peralkaline A-Type Granitic Plutons of the Emeishan Large Igneous Province, SW China. Lithos, 119(1-2): 34-46. https://doi.org/10.1016/j.lithos.2010.07.011
      Shi, R. D., Yang, J. S., Xu, Z. Q., et al., 2008. The Bangong Lake Ophiolite (NW Tibet) and Its Bearing on the Tectonic Evolution of the Bangong-Nujiang Suture Zone. Journal of Asian Earth Sciences, 32(5-6): 438-457. https://doi.org/10.1016/j.jseaes.2007.11.011
      Slaby, E., Martin, H., 2008. Mafic and Felsic Magma Interaction in Granites: The Hercynian Karkonosze Pluton (Sudetes, Bohemian Massif). Journal of Petrology, 49(2): 353-391. https://doi.org/10.1093/petrology/egm085
      Söderlund, U., Patchett, P. J., Vervoort, J. D., et al., 2004. The 176Lu Decay Constant Determined by Lu–Hf and U–Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3-4): 311-324. https://doi.org/10.1016/s0012-821x(04)00012-3
      Sun, M., Chen, W., Qu, X.M., et al., 2018. Petrogenesis of the Late Cretaceous Jiangba Volcanic Rocks and Its Indications for the Thinning of the Thickened Crust in Xiongmei Area, Tibet. Earth Science, 43(9):3234-3251 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201809022
      Sun, G. M., Li, X. P., Duan, W. Y., et al., 2018. Metamorphic Characteristics and Tectonic Implications of the Kadui Blueschist in the Central Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Earth Science, 29(5): 1026-1039. https://doi.org/10.1007/s12583-018-0854-9
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Vernon, R. H., 1984. Microgranitoid Enclaves in Granites-Globules of Hybrid Magma Quenched in a Plutonic Environment. Nature, 309(5967): 438-439. https://doi.org/10.1038/309438a0
      White, R. V., Tarney, J., Kerr, A. C., et al., 1999. Modification of an Oceanic Plateau, Aruba, Dutch Caribbean: Implications for the Generation of Continental Crust. Lithos, 46(1): 43-68. https://doi.org/10.1016/s0024-4937(98)00061-9
      Yang, T.L., Jiang, S.Y., 2015. Petrogenesis of Intermediate-Felsic Intrusive Rocks and Mafic Microgranular Enclaves (MMEs) from Dongleiwan Deposit in Jiurui Ore District, Jiangxi Province: Evidence from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Pb-Hf Isotopes. Earth Science, 40(12):2002-2030 (in Chinese with English abstract).
      Zhang, L.L., Zhu, D.C., Zhao, Z.D., et al., 2011. Early Cretaceous Granitoids in Xainza, Tibet:Evidence of Slab Break-off. Acta Petrologica Sinica, 27(7):1938-1948 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107003
      Zhang, K. J., 2004. Secular Geochemical Variations of the Lower Cretaceous Siliciclastic Rocks from Central Tibet (China) Indicate a Tectonic Transition from Continental Collision to Back-Arc Rifting. Earth and Planetary Science Letters, 229(1-2): 73-89. https://doi.org/10.1016/j.epsl.2004.10.030
      Zhang, K. J., Li, Q. H., Yan, L. L., et al., 2017. Geochemistry of Limestones Deposited in Various Plate Tectonic Settings. Earth-Science Reviews, 167: 27-46. https://doi.org/10.1016/j.earscirev.2017.02.003
      Zhang, K. J., Xia, B., Zhang, Y. X., et al., 2014. Central Tibetan Meso-Tethyan Oceanic Plateau. Lithos, 210-211: 278-288. https://doi.org/10.1016/j.lithos.2014.09.004
      Zhang, K. J., Zhang, Y. X., Tang, X. C., et al., 2012. Late Mesozoic Tectonic Evolution and Growth of the Tibetan Plateau Prior to the Indo-Asian Collision. Earth-Science Reviews, 114(3-4): 236-249. https://doi.org/10.1016/j.earscirev.2012.06.001
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2012. Origin and Paleozoic Tectonic Evolution of the Lhasa Terrane. Geological Journal of China Universities, 18(1):1-15 (in Chinese with English abstract).
      Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454. https://doi.org/10.1016/j.gr.2012.02.002
      Zhu, D. C., Zhao, Z. D., Niu, Y., et al., 2011. Lhasa Terrane in Southern Tibet Came from Australia. Geology, 39(8): 727-730. https://doi.org/10.1130/g31895.1
      侯可军, 李延河, 邹天人, 等, 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10): 2595-2604. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200710025
      曲永贵, 王永胜, 段建祥, 等, 2002.中华人民共和国区域地质调查报告1:250 000多巴幅.武汉:中国地质大学出版社.
      孙渺, 陈伟, 曲晓明, 等, 2018.西藏雄梅地区晚白垩世江巴组火山岩岩石成因及对加厚地壳减薄的指示.地球科学, 43(9):3234-3251. doi: 10.3799/dqkx.2018.146
      杨堂礼, 蒋少涌. 2015.江西九瑞矿集区东雷湾矿区中酸性侵入岩及其铁镁质包体的成因:锆石U-Pb年代学、地球化学与Sr-Nd-Pb-Hf同位素制约.地球科学, 40(12):2002-2020. doi: 10.3799/dqkx.2015.179
      张亮亮, 朱弟成, 赵志丹, 等, 2011.西藏申扎早白垩世花岗岩类:板片断离的证据.岩石学报, 27(7): 1938-1948. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107003
      朱弟成, 赵志丹, 牛耀龄, 等, 2012.拉萨地体的起源和古生代构造演化.高校地质学报, 18(1): 1-15. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201201001
    • dqkx-45-1-17-Table1-3.pdf
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)

      Article views (3867) PDF downloads(89) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return