• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 1
    Jan.  2020
    Turn off MathJax
    Article Contents
    Wang Jiangbo, Hou Xiaohua, Li Wanhua, Zhang Liang, Zhao Youdong, Chen Hongbin, Li Weihong, 2020. Metallogenic Characteristics and Metallogenic Model of the Pegmatite Type Uranium Deposit in Danfeng Area, Eastern Qinling Mountains. Earth Science, 45(1): 61-71. doi: 10.3799/dqkx.2018.302
    Citation: Wang Jiangbo, Hou Xiaohua, Li Wanhua, Zhang Liang, Zhao Youdong, Chen Hongbin, Li Weihong, 2020. Metallogenic Characteristics and Metallogenic Model of the Pegmatite Type Uranium Deposit in Danfeng Area, Eastern Qinling Mountains. Earth Science, 45(1): 61-71. doi: 10.3799/dqkx.2018.302

    Metallogenic Characteristics and Metallogenic Model of the Pegmatite Type Uranium Deposit in Danfeng Area, Eastern Qinling Mountains

    doi: 10.3799/dqkx.2018.302
    • Received Date: 2018-07-28
    • Publish Date: 2020-01-15
    • Pegmatite-type uranium deposit is the most important uranium deposit in the eastern part of northern Qinling metallogenic belt. This paper presents a study of the metallogenic and geochronological characteristics of the ore body,ores,and accessory minerals. Uranium ore-body occurs in pegmatite dykes around the garnet-bearing leucogranite and uraninite is the major industry mineral. The accessory minerals of uranium bearing pegmatite are similar to those of garnet-bearing granitic rocks,but different from gneissic granitic rocks. The results of LA-ICP-MS zircon U-Pb dating of uranium bearing pegmatite is 404.3±1.4 Ma,Early-Devonian. Comprehensive data suggest that the Danfeng garnet-bearing granitic rocks were derived from partial melting of Qinling Group in the post-collision setting during Early-Devonian. The residue magmas were enriched in Th-U and other moderate-incompatible elements but low content of volatile component which have relative short migration. The pegmatite-type uranium was formed near the internal and external contact zone of the pluton. The pluton was emplaced as the stock in the surface which experienced the long time uplift and erosion after the Triassic. Then the uranium-bearing pegmatite dykes were distributed around the stock,which resulted in the Guangshigou uranium deposit. The intrusions at the top were emplaced as the batholiths in the surface after the anabatic uplift and erosion. Thus,the uranium-bearing pegmatites were developed in the internal contact zone,for example,Chenjiazhuang uranium deposit. Based on the metallogenic model,Damaogou and Zhifanggou areas are determined as two areas of metallogenic prospect of pegmatite-type uranium deposit.

       

    • loading
    • Bader, T., Ratschbacher, L., Franz, L., et al., 2013. The Heart of China Revisited, Ⅰ. Proterozoic Tectonics of the Qin Mountains in the Core of Supercontinent Rodinia. Tectonics, 32(3): 661-687. https://doi.org/10.1002/tect.20024
      Chen, Y. W., Bi, X. W., Hu, R. Z., et al., 2013. Mineral Chemistry of Biotite and Its Implications for Uranium Mineralization in Guangshigou Pegmatite Type Uranium Deposit, South Shaanxi Province. Journal of Mineralogy and Petrology, 33(4):17-28 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwys201304003
      Feng, M. Y., 1996. Discussion on the Genesis of Uranium-Producing Pegmatite in Shangdan Area. Uranium Geology, 12(1):30-36 (in Chinese with English abstract).
      Ge, Y, 2017. Geological Geochemistry Characteristics of the Biotite in Granite-Pegmatite-Type Uranium Deposit in Danfeng (Dissertation). East China University of Technology, Nanchang (in Chinese with English abstract).
      Lai, S. C., Qin, J. F., Chen, L., et al., 2008. Geochemistry of Ophiolites from the Mian-Lue Suture Zone: Implications for the Tectonic Evolution of the Qinling Orogen, Central China. International Geology Review, 50(7): 650-664. https://doi.org/10.2747/0020-6814.50.7.650
      Ling, H. F., 2011. Origin of Hydrothermal Fluids of Granite-Type Uranium Deposits: Constraints from Redox Conditions. Geological Review, 57(2):193-206 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000003807
      Liu, D. C., 1991. Isotolpe Geochronologic Characteristics of Uranium Deposit from Chenjiazhuang. Journal of Mineralogy and Petrology, 11(1):173-79 (in Chinese with English abstract).
      Lu, X. X., Zhu, C. H., Gu, D. M., et al., 2010. The Main Geological and Metallogenic Characteristics of Granitic Pegmatite in Eastern Qinling Belt. Geological Review, 56(1):21-30 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201001004
      Mao, J. W., Xie, G. Q., Pirajno, F., et al., 2010. Late Jurassic-Early Cretaceous Granitoid Magmatism in Eastern Qinling, Central-Eastern China: SHRIMP Zircon U-Pb Ages and Tectonic Implications. Australian Journal of Earth Sciences, 57(1): 51-78. https://doi.org/10.1080/08120090903416203
      Rong, J. Y., 1997. The Research Overview of Granite Pegmatites. World Nuclear Geoscience, 14(2):97-108 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=95ef0fed3eea6eb1ce89aa64f7dccfaa
      Sha, Y. Z., Zuo, W. Q., Zhang, Z. S., et al., 2011. Difference of Ore-Bearing and Non-Ore-Bearing Pegmatite in the Guangshigou Area and Its Research Significance. Journal of East China Institute of Technology (Natural Science Edition), 34(3):215-223 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hddzxyxb201103003
      Sun, G., Zhao, Z. H., 1998. Uranium Geology in Northwest China. Northwest Geological Bureau of Nuclear Industry, Xi'an (in Chinese).
      Wan, J., Gao, L. B., Wang, L. X., 1992. Metallogenic Environmental Study and Prospect Assessment of the Granite-Pegmatite-Type Uranium Deposit in Shangxian-Danfeng Triangle Area, Shaanxi. Uranium Geology, 8(5):257-265 (in Chinese with English abstract).
      Wang, J. B., Li, W. H., Zhang, L., 2015. The Geological Characteristics of Pegmatite on the North Side of the Shangdan Zone in the East Qinling and Their Relationship with Uranium Mineralization. Geological Review, 61(Suppl.):542-543 (in Chinese with English abstract).
      Wang, T., Wang, X. X., Tian, W., et al., 2009. North Qinling Paleozoic Granite Associations and Their Variation in Space and Time: Implications for Orogenic Processes in the Orogens of Central China. Science in China (Series D), 39(7): 949-971 (in Chinese).
      Wang, X. X., Wang, T., Zhang, C. L., 2013. Neoproterozoic, Paleozoic, and Mesozoic Granitoid Magmatism in the Qinling Orogen, China: Constraints on Orogenic Process. Journal of Asian Earth Sciences, 72: 129-151. https://doi.org/10.1016/j.jseaes.2012.11.037
      Yang, J. S., Liu, F. L., Wu, C. L., et al., 2003. Two Ultrahigh Pressure Metamorphic Events Recognized in the Central Orogenic Belt of China: Evidence from the U-Pb Dating of Coesite-Bearing Zircons. Acta Geologica Sinica, 77(4):463-477 (in Chinese with English abstract).
      Yuan, H. L., Gao, S., Dai, M. N., et al., 2008. Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS. Chemical Geology, 247(1-2): 100-118. https://doi.org/10.1016/j.chemgeo.2007.10.003
      Yuan, H. L., Liu, X., Bao, Z. A., et al., 2018. A Fast Separation Method for Isotope Analysis Based on Compressed Nitrogen Gas and Ion-Exchange Chromatography Technique—A Case Study of Sr-Nd Isotope Measurement. Journal of Earth Science, 29(1): 223-229. https://doi.org/10.1007/s12583-017-0944-0
      Zeng, L. J., Jin, J. F., 1994. Discussion on the Migration and Precipitation Mechanism of the Uranium in Some Granite-Pegmatite Type Uranium Deposit. Journal of East China Geological Institute, 17(3):264-269 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400184948
      Zhang, G. W., Guo, A. L., 2019. Thoughts on Continental Tectonics. Earth Science, 44(5): 1464-1475 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201905005
      Zhang, S. M., Jiang, G. L., Liu, K. F., et al., 2014. Evolution of Neoproterozoic-Mesozoic Sedimentary Basins in Qinling-Dabie Orogenic Belt. Earth Science, 39(8):1085-1119 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201408019
      Zhang, Z. Q., Zhang, G. W., Liu, D. Y., et al., 2006. Isotopic Geochronology and Geochemistry of Ophiolites, Granites and Clastic Sedimentary Rocks in the Qinling Orogenic Belt. Geological Publishing House, Beijing (in Chinese with English abstract).
      Zhao, R. Y., Li, W. H., Jiang, C. Y., et al., 2014. The LA-ICP-MS Zircon U-Pb Dating, Petro-Geochemical Characteristics of Huanglongmiao Monzogranite in Danfeng Area in Eastern Qingling Mts. and Their Geological Significance. Geological Review, 60(5):1123-1132 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201405017
      Zuo, W. Q., Sha, Y. Z., Chen, B., et al., 2010. U-Pb Isotopic Dating of Zircon from Damaogou Granite Stock in Guangshigou Uranium Deposit in Danfeng Areas and It Significance. Uranium Geology, 26(4):222-227 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykdz201004005
      陈佑纬, 毕献武, 胡瑞忠, 等, 2013.陕南光石沟伟晶岩型铀矿床黑云母矿物化学研究及其对铀成矿的启示.矿物岩石, 33(4):17-28. doi: 10.3969/j.issn.1001-6872.2013.04.003
      冯明月, 1996.商丹地区产铀伟晶岩成因讨论.铀矿地质, 12(1):30-36.
      葛瑶, 2017.丹凤花岗伟晶岩型铀矿床中黑云母的地质地球化学特征(硕士学位论文).南昌: 东华理工大学.
      凌洪飞, 2011.论花岗岩型铀矿床热液来源——来自氧逸度条件的制约.地质论评, 57(2):193-206. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201102005
      刘德成, 1991.陈家庄铀矿同位素地质年代学特征.矿物岩石, 11(1):173-79.
      卢欣祥, 祝朝辉, 谷德敏, 等, 2010.东秦岭花岗伟晶岩的基本地质矿化特征.地质论评, 56(1): 21-30. http://d.old.wanfangdata.com.cn/Periodical/dzlp201001004
      戎嘉树, 1997.花岗伟晶岩研究概况.世界核地质科学, 14(2):97-108.
      沙亚洲, 左文乾, 张展适, 等, 2011.陕西秦岭光石沟陕西秦岭光石沟铀矿床含矿与非含矿伟晶岩差异性及其研究意义.东华理工大学学报(自然科学版), 34(3):215-223. doi: 10.3969/j.issn.1674-3504.2011.03.003
      孙圭, 赵致和, 1998.中国北西部铀矿地质.西安: 核工业西北地质局.
      万吉, 高立宝, 王莲香, 1992.商丹三角地区花岗伟晶岩型铀矿成矿环境研究及远景评价.铀矿地质, 8(5):257-265.
      王江波, 李卫红, 张良, 2015.东秦岭商丹带北侧伟晶岩地质特征与铀成矿关系探讨.地质论评, 61(增刊):542-543. http://d.old.wanfangdata.com.cn/Conference/9142108
      王涛, 王晓霞, 田伟, 等, 2009.北秦岭古生代花岗岩组合、岩浆时空演变及其对造山作用的启示.中国科学(D辑), 39(7): 949-971. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200901195408
      杨经绥, 刘福来, 吴才来, 等, 2003.中央碰撞造山带中两期超高压变质作用:来自含柯石英锆石的定年证据.地质学报, 77(4):463-477. doi: 10.3321/j.issn:0001-5717.2003.04.003
      曾令交, 金景福, 1994.某花岗伟晶岩型铀矿铀迁移沉淀机制探讨.华东地质学院学报, 17(3):264-269. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400184948
      张国伟, 郭安林, 2019.关于大陆构造研究的一些思考与讨论.地球科学, 44(5): 1464-1475. doi: 10.3799/dqkx.2019.971
      张思敏, 姜高磊, 柳坤峰, 等, 2014.秦岭-大别新元古代-中生代沉积盆地演化.地球科学, 39(8):1085-1119. doi: 10.3799/dqkx.2014.094
      张宗清, 张国伟, 刘敦一, 等, 2006.秦岭造山带蛇绿岩、花岗岩和碎肩沉积岩同位素年代学和地球化学.北京:地质出版社.
      赵如意, 李卫红, 姜常义, 等, 2014.东秦岭丹凤地区黄龙庙二长花岗岩LA-ICP-MS锆石U-Pb年龄、岩石地球化学特征及其地质意义.地质论评, 60(5):1123-1132. http://d.old.wanfangdata.com.cn/Periodical/dzlp201405017
      左文乾, 沙亚洲, 陈冰, 等, 2010.丹凤地区光石沟铀矿床大毛沟岩株锆石U-Pb同位素定年及其地质意义.铀矿地质, 26(4):222-227. doi: 10.3969/j.issn.1000-0658.2010.04.005
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(5)

      Article views (3319) PDF downloads(128) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return