• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 4
    Apr.  2019
    Turn off MathJax
    Article Contents
    Xu Cheng, Kuang Guangxi, Zeng Liang, Song Wenlei, Deng Miao, Wei Chunwan, 2019. Original Depth of Paleoproterozoic Carbonatites in North China Craton and Onset of Modern-Style Plate Tectonics. Earth Science, 44(4): 1083-1095. doi: 10.3799/dqkx.2018.318
    Citation: Xu Cheng, Kuang Guangxi, Zeng Liang, Song Wenlei, Deng Miao, Wei Chunwan, 2019. Original Depth of Paleoproterozoic Carbonatites in North China Craton and Onset of Modern-Style Plate Tectonics. Earth Science, 44(4): 1083-1095. doi: 10.3799/dqkx.2018.318

    Original Depth of Paleoproterozoic Carbonatites in North China Craton and Onset of Modern-Style Plate Tectonics

    doi: 10.3799/dqkx.2018.318
    • Received Date: 2018-06-28
    • Publish Date: 2019-04-15
    • Subduction is one of the key factors that change the evolution of the interior of the Earth, and there have been controversies over the starting time of modern-style plate tectonics. The discovery of majorite garnet inclusions and eclogite xenoliths hosted by the Paleoproterozoic carbonatites in the Fengzhen area, Inner Mongolia, provides a rare window into the origin depth of magma and plate tectonics. Mineralogy and high temperature and pressure experiments constrain the ferric iron-rich (Fe3+/∑Fe~0.8) majoritic garnets (Si ~3.18 pfu) originated from about ~400 km in depth, indicating that the carbonatitic magma originated from the mantle transition zone. The mineral-pair thermobarometer and P-T phase diagram determine the peak metamorphic pressure and temperature at ~660 ℃ and ~2.65 GPa, which gives a peak thermal gradient of ~250 ℃·GPa-1, similar to the product of modern plate deep subduction, indicating that the modern plate tectonics has started since the Paleoproterozoic. Statistics show that the global Paleoproterozoic carbonatites are closely associated with high-pressure metamorphic rocks in Paleoproterozoic orogens. Global Paleoproterozoic slab subduction might be linked to the Columbia supercontinent amalgamation. Large-scale slab subduction inputted crustal sediments into the deep mantle, forming carbonatitic magmas and oxidized ferric iron-rich majoritic garnets. Crustal materials recycled for about 2 billion years in the mantle source region, leading to the compositional heterogeneities and carbon cycle in the deep mantle.

       

    • loading
    • Agard, P., Yamato, P., Jolivet, L., et al., 2009.Exhumation of Oceanic Blueschists and Eclogites in Subduction Zones:Timing and Mechanisms.Earth-Science Reviews, 92(1-2):53-79. doi: 10.1016/j.earscirev.2008.11.002
      Bell, K., Keller, J., 1995.Carbonatite Volcanism: Oldoinyo Lengai and the Petrogenesis of Natrocarbonatites.Springer, Berlin. https://www.researchgate.net/publication/321612811_Carbonatite_Volcanism_Oldoinyo_Lengai_and_the_Petrogenesis_of_Natrocarbonatites
      Belousova, E.A., Kostitsyn, Y.A., Griffin, W.L., et al., 2010.The Growth of the Continental Crust:Constraints from Zircon Hf-Isotope Data.Lithos, 119(3-4):457-466. doi: 10.1016/j.lithos.2010.07.024
      Brown, M., 2006.Duality of Thermal Regimes is the Distinctive Characteristic of Plate Tectonics since the Neoarchean.Geology, 34(11):961-964. doi: 10.1130/G22853A.1
      Brown, M., Johnson, T., 2018.Secular Change in Metamorphism and the Onset of Global Plate Tectonics.American Mineralogist, 103(2):181-196. doi: 10.2138/am-2018-6166
      Collerson, K.D., Williams, Q., Kamber, B.S., et al., 2010.Majoritic Garnet:A New Approach to Pressure Estimation of Shock Events in Meteorites and the Encapsulation of Sub-Lithospheric Inclusions in Diamond.Geochimica et Cosmochimica Acta, 74(20):5939-5957. doi: 10.1016/j.gca.2010.07.005
      Condie, K.C., 2011.Earth as an Evolving Planetary System.Academic Press, Amsterdam.
      Dasgupta, R., Hirschmann, M.M., 2006.Melting in the Earth's Deep Upper Mantle Caused by Carbon Dioxide.Nature, 440(7084):659-662. doi: 10.1038/nature04612
      Dasgupta, R., Mallik, A., Tsuno, K., et al., 2013.Carbon-Dioxide-Rich Silicate Melt in the Earth's Upper Mantle.Nature, 493(7431):211-215. doi: 10.1038/nature11731
      Dhuime, B., Storey, C.D., 2012.A Change in the Geodynamics of Continental Growth 3 Billion Years Ago.Science, 335(6074):1334-1336. doi: 10.1126/science.1216066
      Dobson, D.P., Jones, A.P., Rabe, R., et al., 1996.In-Situ Measurement of Viscosity and Density of Carbonate Melts at High Pressure.Earth and Planetary Science Letters, 143(1-4):207-215. doi: 10.1016/0012-821X(96)00139-2
      Feng, M., Xu, C., Kynicky, J., et al., 2016.Rare Earth Element Enrichment in Palaeoproterozoic Fengzhen Carbonatite from the North China Block.International Geology Review, 58(15):1940-1950. doi: 10.1080/00206814.2016.1193774
      Fischer, T.P., Burnard, P., Marty, B., et al., 2009.Upper-Mantle Volatile Chemistry at Oldoinyo Lengai Volcano and the Origin of Carbonatites.Nature, 459(7243):77-80. doi: 10.1038/nature07977
      Foley, S.F., Buhre, S., Jacob, D.E., 2003.Evolution of the Archaean Crust by Delamination and Shallow Subduction.Nature, 421(6920):249-252. doi: 10.1038/nature01319
      Frost, D.J., McCammon, C.A., 2008.The Redox State of Earth's Mantle.Annual Review of Earth and Planetary Sciences, 36(1):389-420. doi: 10.1146/annurev.earth.36.031207.124322
      Gaillard, F., Malki, M., Iacono-Marziano, G., et al., 2008.Carbonatite Melts and Electrical Conductivity in the Asthenosphere.Science, 322(5906):1363-1365. doi: 10.1126/science.1164446
      Genge, M.J., Price, G.D., Jones, A.P., 1995.Molecular Dynamics Simulations of CaCO3 Melts to Mantle Pressures and Temperatures:Implications for Carbonatite Magmas.Earth and Planetary Science Letters, 131(3-4):225-238. doi: 10.1016/0012-821X(95)00020-D
      Greber, N.D., Dauphas, N., Bekker, A., et al., 2017.Titanium Isotopic Evidence for Felsic Crust and Plate Tectonics 3.5 Billion Years Ago.Science, 357(6357):1271-1274. doi: 10.1126/science.aan8086
      Guo, J.H., Zhai, M.G., Zhang, Y.G., et al., 1993.Early Precambrian Manjinggou High-Pressure Granulite Melange Belt on the South Edge of the Huaian Complex, North China Craton:Geological Features, Petrology and Isotopic Geochronology.Acta Petrologica Sinica, 9(4):329-341 (in Chinese with English abstract).
      Hawkesworth, C.J., Kemp, A.I.S., 2006.Using Hafnium and Oxygen Isotopes in Zircons to Unravel the Record of Crustal Evolution.Chemical Geology, 226(3-4):144-162. https://doi.org/10.1016/j.chemgeo.2005.09.018
      Herzberg, C., Asimow, P.D., Arndt, N., et al., 2007.Temperatures in Ambient Mantle and Plumes:Constraints from Basalts, Picrites, and Komatiites.Geochemistry Geophysics Geosystems, 8(2):Q02006. doi: 10.1029-2006GC001390/
      Höfer, H.E., Brey, G.P., Schulz-Dobrick, B., et al., 1994.The Determination of the Oxidation State of Iron by the Electron Microprobe.European Journal of Mineralogy, 6(3):407-418. https://doi.org/10.1127/ejm/6/3/0407
      Hofmann, A.W., 1997.Mantle Geochemistry:The Message from Oceanic Volcanism.Nature, 385(6613):219-229. doi: 10.1038/385219a0
      Hofmeister, A.M., Giesting, P.A., Wopenka, B., et al., 2004.Vibrational Spectroscopy of Pyrope-Majorite Garnets:Structural Implications.American Mineralogist, 89(1):132-146. https://doi.org/10.2138/am-2004-0116
      Irifune, T., Sekine, T., Ringwood, A.E., et al., 1986.The Eclogite-Garnetite Transformation at High Pressure and Some Geophysical Implications.Earth and Planetary Science Letters, 77(2):245-256.https://doi.org/10.1016/0012-821x(86)90165-2 doi: 10.1016/0012-821X(86)90165-2
      Jacob, D.E., 2004.Nature and Origin of Eclogite Xenoliths from Kimberlites.Lithos, 77(1-4):295-316. https://doi.org/10.1016/j.lithos.2004.03.038
      Jahn, B.M., Caby, R., Monie, P., 2001.The Oldest UHP Eclogites of the World:Age of UHP Metamorphism, Nature of Protoliths and Tectonic Implications.Chemical Geology, 178(1-4):143-158.https://doi.org/10.1016/s0009-2541(01)00264-9 doi: 10.1016/S0009-2541(01)00264-9
      Kiseeva, E.S., Yaxley, G.M., Stepanov, A.S., et al., 2013.Metapyroxenite in the Mantle Transition Zone Revealed from Majorite Inclusions in Diamonds.Geology, 41(8):883-886. doi: 10.1130/G34311.1
      Kiseeva, E.S., Wood, B.J., Ghosh, S., et al., 2016.The Pyroxenite-Diamond Connection.Geochemical Perspectives Letters, 2(1):1-9. doi: 10.7185/geochemlet.1601
      Korh, A.E., Schmidt, S.T., Ulianov, A., et al., 2009.Trace Element Partitioning in HP-LT Metamorphic Assemblages during Subduction-Related Metamorphism, Ile de Groix, France:A Detailed LA-ICPMS Study.Journal of Petrology, 50(6):1107-1148. doi: 10.1093/petrology/egp034
      Labrosse, S., Jaupart, C., 2007.Thermal Evolution of the Earth:Secular Changes and Fluctuations of Plate Characteristics.Earth and Planetary Science Letters, 260(3-4):465-481. doi: 10.1016/j.epsl.2007.05.046
      Li, S.Z., Dai, L.M., Zhang, Z., et al., 2015.Precambrian Geodynamics(Ⅲ):General Features of Precambrian Geology.Earth Science Frontiers, 22(6):27-45 (in Chinese with English abstract). https://www.researchgate.net/publication/287261159_Precambrian_geodynamics_III_General_features_of_Precambrian_geology
      Litasov, K., Ohtani, E., 2010.The Solidus of Carbonated Eclogite in the System CaO-Al2O3-MgO-SiO2-Na2O-CO2 to 32 GPa and Carbonatite Liquid in the Deep Mantle.Earth and Planetary Science Letters, 295(1-2):115-126. doi: 10.1016/j.epsl.2010.03.030
      Liu, F.L., Zhang, L.F., Li, X.L., et al., 2017.The Metamorphic Evolution of Paleoproterozoic Eclogites in Kuru-Vaara, Northern Belomorian Province, Russia:Constraints from P-T Pseudosections and Zircon Dating.Precambrian Research, 289:31-47. doi: 10.1016/j.precamres.2016.11.011
      Maruyama, S., Liou, J.G., Terabayashi, M., 1996.Blueschists and Eclogites of the World and Their Exhumation.International Geology Review, 38(6):485-594. doi: 10.1080/00206819709465347
      McCammon, C., 2005.The Paradox of Mantle Redox.Science, 308(5723):807-808. https://doi.org/10.1126/science.1110532
      Mints, M.V., Belousova, E.A., Konilov, A.N., et al., 2010.Mesoarchean Subduction Processes:2.87 Ga Eclogites from the Kola Peninsula, Russia.Geology, 38(8):739-742. doi: 10.1130/G31219.1
      Moyen, J.F., Martin, H., 2012.Forty Years of TTG Research.Lithos, 148(148):312-336. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7fd75643f9219d8289ed37b5662b384e
      Nakatsuka, A., Yoshiasa, A., Yamanaka, T., et al., 1999.Symmetry Change of Majorite Solid-Solution in the System Mg3Al2Si3O12-MgSiO3.American Mineralogist, 84(7-8):1135-1143. doi: 10.2138/am-1999-7-816
      Nelson, D.R., Chivas, A.R., Chappell, B.W., et al., 1988.Geochemical and Isotopic Systematics in Carbonatites and Implications for the Evolution of Ocean-Island Sources.Geochimica et Cosmochimica Acta, 52(1):1-17. doi: 10.1016/0016-7037(88)90051-8
      Palin, R.M., White, R.W., Green, E.C.R., 2016.Partial Melting of Metabasic Rocks and the Generation of Tonalitic-Trondhjemitic-Granodioritic (TTG) Crust in the Archaean:Constraints from Phase Equilibrium Modelling.Precambrian Research, 287:73-90. https://doi.org/10.1016/j.precamres.2016.11.001
      Powell, R., Holland, T., Worley, B., 1998.Calculating Phase Diagrams Involving Solid Solutions via Non-Linear Equations, with Examples Using THERMOCALC.Journal of Metamorphic Geology, 16(4):577-588. doi: 10.1111/jmg.1998.16.issue-4
      Rapp, R.P., Shimizu, N., Norman, M.D., 2003.Growth of Early Continental Crust by Partial Melting of Eclogite.Nature, 425(6958):605-609. doi: 10.1038/nature02031
      Rohrbach, A., Ballhaus, C., Golla-Schindler, U., et al., 2007.Metal Saturation in the Upper Mantle.Nature, 449(7161):456-458. doi: 10.1038/nature06183
      Scambelluri, M., Pettke, T., van Roermund, H.L.M., 2008.Majoritic Garnets Monitor Deep Subduction Fluid Flow and Mantle Dynamics.Geology, 36(1):59-62. doi: 10.1130/G24056A.1
      Shirey, S.B., Richardson, S.H., 2011.Start of the Wilson Cycle at 3 Ga Shown by Diamonds from Subcontinental Mantle.Science, 333(6041):434-436. doi: 10.1126/science.1206275
      Smithies, R.H., 2000.The Archaean Tonalite-Trondhjemite-Granodiorite (TTG) Series is not an Analogue of Cenozoic Adakite.Earth and Planetary Science Letters, 182(1):115-125. doi: 10.1016/S0012-821X(00)00236-3
      Stein, M., Hofmann, A.W., 1994.Mantle Plumes and Episodic Crustal Growth.Nature, 372(6501):63-68. doi: 10.1038/372063a0
      Stern, R.J., 2005.Evidence from Ophiolites, Blueschists, and Ultrahigh-Pressure Metamorphic Terranes That the Modern Episode of Subduction Tectonics Began in Neoproterozoic Time.Geology, 33(7):557-560. doi: 10.1130/G21365.1
      Sweeney, R.J., 1994.Carbonatite Melt Compositions in the Earth's Mantle.Earth and Planetary Science Letters, 128(3-4):259-270. doi: 10.1016/0012-821X(94)90149-X
      Tang, M., Chen, K., Rudnick, R.L., 2016.Archean Upper Crust Transition from Mafic to Felsic Marks the Onset of Plate Tectonics.Science, 351(6271):372-375. doi: 10.1126/science.aad5513
      Tao, R.B., Fei, Y.W., Bullock, E.S., et al., 2018.Experimental Investigation of Fe3+-Rich Majoritic Garnet and Its Effect on Majorite Geobarometer.Geochimica et Cosmochimica Acta, 225:1-16. doi: 10.1016/j.gca.2018.01.008
      Thomson, A.R., Walter, M.J., Kohn, S.C., et al., 2016.Slab Melting as a Barrier to Deep Carbon Subduction.Nature, 529(7584):76-79. doi: 10.1038/nature16174
      Tomkins, H.S., Powell, R., Ellis, D.J., 2007.The Pressure Dependence of the Zirconium-in-Rutile Thermometer.Journal of Metamorphic Geology, 25(6):703-713. doi: 10.1111/jmg.2007.25.issue-6
      Trap, P., Faure, M., Lin, W., et al., 2009.The Zanhuang Massif, the Second and Eastern Suture Zone of the Paleoproterozoic Trans-North China Orogen.Precambrian Research, 172(1-2):80-98. doi: 10.1016/j.precamres.2009.03.011
      Treiman, A.H., Schedl, A., 1983.Properties of Carbonatite Magma and Processes in Carbonatite Magma Chambers.The Journal of Geology, 91(4):437-447. https://doi.org/10.1086/628789
      van der Hist, R., Engdahl, R., Spakman, W., et al., 1991.Tomographic Imaging of Subducted Lithosphere below Northwest Pacific Island Arcs.Nature, 353(6339):37-43. https://doi.org/10.1038/353037a0
      van Hunen, J., Moyen, J.F., 2012.Archean Subduction:Fact or Fiction?.Annual Review of Earth and Planetary Sciences, 40(1):195-219. https://doi.org/10.1146/annurev-earth-042711-105255
      van Thienen, P., Vlaar, N.J., van den Berg, A.P., 2004.Plate Tectonics on the Terrestrial Planets.Physics of the Earth and Planetary Interiors, 142(1-2):61-74. https://doi.org/10.1016/j.pepi.2003.12.008
      Walter, M.J., Bulanova, G.P., Armstrong, L.S., et al., 2008.Primary Carbonatite Melt from Deeply Subducted Oceanic Crust.Nature, 454(7204):622-625. https://doi.org/10.1038/nature07132
      Waters, D.J., Martin, H.N., 1993.Geobarometry of Phengite-Bearing Eclogites.Terra Abstracts, 5:410-411. http://cn.bing.com/academic/profile?id=6174123f308df636f644f1ff2449fa5a&encoded=0&v=paper_preview&mkt=zh-cn
      Wilson, J.T., 1966.Did the Atlantic Close and Then Re-Open?.Nature, 211(5050):676-681. doi: 10.1038/211676a0
      Wood, B.J., Kiseeva, E.S., Matzen, A.K., 2013.Garnet in the Earth's Mantle.Elements, 9(6):421-426. https://doi.org/10.2113/gselements.9.6.421
      Woolley, A.R., Kjarsgaard, B.A., 2008.Carbonatite Occurrences of the World: Map and Database.Geological Survey of Canada, Open File, 5796.
      Wyllie, P.J., 1989.Origin of Carbonatites: Evidence from Phase Equilibrium Studies.In: Bell, K., ed., Carbonatites: Genesis and Evolution.Unwin Hyman, London, 500-545.
      Xiong, X.L., 2006.Trace Element Evidence for Growth of Early Continental Crust by Melting of Rutile-Bearing Hydrous Eclogite.Geology, 34(11):945-948.https://doi.org/10.1130/g22711a.1 doi: 10.1130/G22711A.1
      Xu, C., Chakhmouradian, A.R., Taylor, R.N., et al., 2014.Origin of Carbonatites in the South Qinling Orogen:Implications for Crustal Recycling and Timing of Collision between the South and North China Blocks.Geochimica et Cosmochimica Acta, 143:189-206. https://doi.org/10.1016/j.gca.2014.03.041
      Xu, C., Kynick, J., Song, W.L., et al., 2018.Cold Deep Subduction Recorded by Remnants of a Paleoproterozoic Carbonated Slab.Nature Communications, 9:2790. https://doi.org/10.1038/s41467-018-05140-5
      Xu, C., Kynick, J., Tao, R.B., et al., 2017.Recovery of an Oxidized Majorite Inclusion from Earth's Deep Asthenosphere.Science Advances, 3(4):e1601589. https://doi.org/10.1126/sciadv.1601589
      Xu, C., Zeng, L., Song, W.L., et al., 2017.Orogenic Carbonatite Petrogenesis and Deep Carbon Recycle.Bulletin of Mineralogy, Petrology and Geochemistry, 36(2):213-221, 183 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201702004
      Zack, T., Moraes, R., Kronz, A., 2004.Temperature Dependence of Zr in Rutile:Empirical Calibration of a Rutile Thermometer.Contributions to Mineralogy and Petrology, 148(4):471-488. https://doi.org/10.1007/s00410-004-0617-8
      Zeng, L., Xu, C., Li, Y.X., et al., 2017.Petrogenesis and Tectonic Implication of Paleoproterozoic Granites and Granulites in the Fengzhen Area of North China Craton.Precambrian Research, 302:298-311. https://doi.org/10.1016/j.precamres.2017.10.015
      Zhang, Q., Zhai, M.G., 2012.What is the Archean TTG? Acta Petrologica Sinica, 28(11):3446-3456 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201211002
      Zhao, G.C., Sun, M., Wilde, S.A., et al., 2004.A Paleo-Mesoproterozoic Supercontinent:Assembly, Growth and Breakup.Earth-Science Reviews, 67(1-2):91-123. https://doi.org/10.1016/j.earscirev.2004.02.003
      Zhao, G.C., Sun, M., Wilde, S.A., et al., 2005.Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited.Precambrian Research, 136(2):177-202. https://doi.org/10.1016/j.precamres.2004.10.002
      Zhao, G.C., Wilde, S.A., Cawood, P.A., et al., 2001.Archean Blocks and Their Boundaries in the North China Craton:Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution.Precambrian Research, 107(1):45-73.doi: 10.1016/S0301-9268(00)00154-6
      Zhao, G.C., Wilde, S.A., Cawood, P.A., et al., 2002.SHRIMP U-Pb Zircon Ages of the Fuping Complex:Implications for Late Archean to Paleoproterozoic Accretion and Assembly of the North China Craton.American Journal of Science, 302(3):191-226. https://doi.org/10.2475/ajs.302.3.191
      Zhou, L.G., Zhai, M.G., Lu, J.S., et al., 2017.Paleoproterozoic Metamorphism of High-Grade Granulite Facies Rocks in the North China Craton:Study Advances, Questions and New Issues.Precambrian Research, 303:520-547. https://doi.org/10.1016/j.precamres.2017.06.025
      郭敬辉, 翟明国, 张毅刚, 等, 1993.怀安蔓菁沟早前寒武纪高压麻粒岩混杂岩带地质特征、岩石学和同位素年代学.岩石学报, 9(4):329-341. doi: 10.3321/j.issn:1000-0569.1993.04.007
      李三忠, 戴黎明, 张臻, 等, 2015.前寒武纪地球动力学(Ⅲ):前寒武纪地质基本特征.地学前缘, 22(6):27-45. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201506005.htm
      许成, 曾亮, 宋文磊, 等, 2017.造山带碳酸岩起源与深部碳循环.矿物岩石地球化学通报, 36(2):213-221, 183. doi: 10.3969/j.issn.1007-2802.2017.02.004
      张旗, 翟明国, 2012.太古宙TTG岩石是什么含义?岩石学报, 28(11):3446-3456. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201211002
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)

      Article views (5433) PDF downloads(117) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return