• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 2
    Feb.  2020
    Turn off MathJax
    Article Contents
    Li Yiming, Wen Zhang, 2020. Impacts of Non-Darcian Flow in the Fracture on Flow Field and Solute Plumes in a Fracture-Aquifer System. Earth Science, 45(2): 693-700. doi: 10.3799/dqkx.2018.345
    Citation: Li Yiming, Wen Zhang, 2020. Impacts of Non-Darcian Flow in the Fracture on Flow Field and Solute Plumes in a Fracture-Aquifer System. Earth Science, 45(2): 693-700. doi: 10.3799/dqkx.2018.345

    Impacts of Non-Darcian Flow in the Fracture on Flow Field and Solute Plumes in a Fracture-Aquifer System

    doi: 10.3799/dqkx.2018.345
    • Received Date: 2018-12-27
    • Publish Date: 2020-02-15
    • In this study, a mathematical model with the intersection angle between the flow direction and the x axial direction of 45degree was developed to investigate the effect of non-Darcy parameter n on flow field and solute migration when flow is oblique crossing the fracture. The Comsol Multiphysics software was used to do such numerical simulation. The simulation area was assumed to be square with a horizontal fracture embedded in the middle.The flow in the fracture was assumed to be non-Darcian and can be described by the Izbash equation. A constant solute source has been assigned in the upper matrix. The results indicate the following phenomena as the power index in the Izbash equation(n) increases:(1) the fracture flow velocity increases, and the flow line at the matrix-fracture interfaces gradually deviates from the classical fraction law; (2) the flow direction in fracture gradually turns to the direction in the matrix; (3) the width of solute plume increases, while the symmetry of solute plume reduces; (4) the peak solute concentration in the horizontal section diminishes, and the solute concentration on the right sight of the model increases; (5) the effect of back dispersion caused by fracture on solute plume becomes stronger, which results in more solutes in the fracture migrated to the upper matrix. Overall, the non-Darcy flow fracture has a significant impact on the flow field and solute distribution.

       

    • loading
    • Basak, P., 1977. Non-Darcy Flow and Its Implications to Seepage Problems. Journal of the Irrigation and Drainage Division, 103(4):459-473.
      Bear, J., Tsang, C.F., Marsily, G.D., 1993. Flow and Contaminant Transport in Fractured Rock. Journal of the American Mosquito Control Association, 23(3):330-400. http://www.sciencedirect.com/science/book/9780120839803
      Berkowitz, B., Miller, C.T., Parlange, M.B., et al., 2002. Characterizing Flow and Transport in Fractured Geological Media:A Review. Advances in Water Resources, 25(8/9/10/11/12):861-884. https://doi.org/10.1016/s0309-1708(02)00042-8
      Cheng, H.D., Chai, J.R., Li, Y.M., 2007. Brief Overview on Solute Transport in Fractured Rock Masses. Water Resources and Power, (03):33-37 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDNY200703009.htm
      Gao, Y., Ye, X., Xia, Q., 2016. Numerical Simulation of Single Fracture Seepage Flow Based on the Equivalent Continuous Medium Model. Goundwater, 38(5):40-43(in Chinese).
      Kessler, J. H., Hunt, J. R., 1994. Dissolved and Colloidal Contaminant Transport in a Partially Clogged Fracture. Water Resources Research, 30(4):1195-1206. https://doi.org/10.1029/93wr03555
      Konikow, L. F., 2011. The Secret to Successful Solute-Transport Modeling. Ground Water, 49(2):144-159. https://doi.org/10.1111/j.1745-6584.2010.00764.x
      Long, J. C. S., Remer, J. S., Wilson, C. R., et al., 1982. Porous Media Equivalents for Networks of Discontinuous Fractures. Water Resources Research, 18(3):645-658. https://doi.org/10.1029/wr018i003p00645
      Odling, N. E., Roden, J. E., 1997. Contaminant Transport in Fractured Rocks with Significant Matrix Permeability, Using Natural Fracture Geometries. Journal of Contaminant Hydrology, 27(3/4):263-283. https://doi.org/10.1016/s0169-7722(96)00096-4
      Qian, J.Z., Wang, J.Q., Ge, X.G., et al., 2002. Advances in Research for Numerical Simulation of Contaminant Transport and Flow in North China Type Fracture-Karst Media. Advance in Water Science, (4):409-412 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKXJ200304022.htm
      Qin, R.G., Cao, G.Z., Wu, Y.Q., 2014. Review of the Study of Groundwater Flow and Solute Transport in Heterogeneous Aquifer. Advances in Earth Science, 29(1):30-41(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXJZ201401004.htm
      Robinson, N. I., Werner, A. D., 2017. On Concentrated Solute Sources in Faulted Aquifers. Advances in Water Resources, 104:255-270. https://doi.org/10.1016/j.advwatres.2017.04.008
      Sebben, M. L., Werner, A. D., 2016. On the Effects of Preferential or Barrier Flow Features on Solute Plumes in Permeable Porous Media. Advances in Water Resources, 98:32-46. doi: 10.1016/j.advwatres.2016.10.011
      Sebben, M. L., Werner, A. D., Graf, T., 2015. Seawater Intrusion in Fractured Coastal Aquifers:A Preliminary Numerical Investigation Using a Fractured Henry Problem. Advances in Water Resources, 85:93-108. doi: 10.1016/j.advwatres.2015.09.013
      Song, X.C., Xu, W.Y., 2004. A Study on Conceptual Models of Fluid Flow in Fractured Rock. Rock and Soil Mechanics, (2):226-232 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX200402015.htm
      Tsang, C., 2000. Modeling Groundwater Flow and Mass Transport in Heterogeneous Media:Issues and Challenges. Earth Science, 25(5):443-453 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqkx200005000.htm
      Vujević, K., Graf, T., Simmons, C. T., et al., 2014. Impact of Fracture Network Geometry on Free Convective Flow Patterns. Advances in Water Resources, 71:65-80. doi: 10.1016/j.advwatres.2014.06.001
      Xu, Y., Xue, X.S., Liu, Y.Q., et al., 2014. A Coupled Dracy-Brinkman-NS Simulation Model of Well Bore Effect of an Monitor Well. Earth Science, 39(09):1349-1356 (in Chinese with English abstract).
      程汉鼎, 柴军瑞, 李亚盟, 2007.裂隙岩体溶质运移研究简述.水电能源科学, (3):33-37. doi: 10.3969/j.issn.1000-7709.2007.03.010
      高瑜, 叶咸, 夏强, 2016.基于等效连续介质模型的单裂隙渗流数值模拟研究.地下水, 38(5):40-43. doi: 10.3969/j.issn.1004-1184.2016.05.016
      钱家忠, 汪家权, 葛晓光, 等, 2003.我国北方型裂隙岩溶水流及污染物运移数值模拟研究进展.水科学进展, (4):409-412. http://www.cqvip.com/Main/Detail.aspx?id=8264795
      覃荣高, 曹广祝, 仵彦卿, 2014.非均质含水层中渗流与溶质运移研究进展.地球科学进展, 29(1):30-41. http://www.cqvip.com/QK/94287X/201401/48411568.html
      宋晓晨, 徐卫亚, 2004.裂隙岩体渗流概念模型研究.岩土力学, (2):226-232. doi: 10.3969/j.issn.1000-7598.2004.02.013
      徐亚, 薛祥山, 刘玉强, 等, 2014.地下水观测井井筒效应的多场耦合数值模拟.地球科学, 39(9):1349-1356. doi: 10.3799/dqkx.2014.117
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(4)

      Article views (3420) PDF downloads(47) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return