• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 3
    Mar.  2019
    Turn off MathJax
    Article Contents
    Zhang Yi, Hu Shouzhi, Liao Zewen, Xu Jianbing, Shen Chuanbo, 2019. Shale Pore Evolution Characteristics Based on Semi-Closed Pyrolysis Experiment. Earth Science, 44(3): 983-992. doi: 10.3799/dqkx.2018.353
    Citation: Zhang Yi, Hu Shouzhi, Liao Zewen, Xu Jianbing, Shen Chuanbo, 2019. Shale Pore Evolution Characteristics Based on Semi-Closed Pyrolysis Experiment. Earth Science, 44(3): 983-992. doi: 10.3799/dqkx.2018.353

    Shale Pore Evolution Characteristics Based on Semi-Closed Pyrolysis Experiment

    doi: 10.3799/dqkx.2018.353
    • Received Date: 2018-11-06
    • Publish Date: 2019-03-15
    • The microscopic pore structure of organic-rich shale is an important factor affecting the enrichment of shale gas, but the characteristics of pore structure change during thermal evolution are not clear, which is difficult for the current research.Taking the low-mature oil shale samples of the Middle Permian Lucaogou Formation in the Santanghu Basin, Xinjiang as an example, a high-temperature and high-pressure semi-closed pyrolysis experiment was carried out, and the thermal simulation samples at various temperature stages were extracted, using low-temperature adsorption technique to characterize the pore structure of the un-extracted and extracted sample and to reveal the pore evolution characteristics of the low mature to over mature shale samples.The results show that in the low-mature to mature stage, the content of mesopores decreases with the increase of thermal simulation temperature, and the micropore content decreases first and then rises.High pressure and residual oil/bitumen have certain inhibitory effect for all pores.While at the high maturity stage, the pore content increases significantly, and the micropore and mesopore are generated in the residual bitumen.It indicates that temperature and pressure conditions have important influence on pore structure in thermal simulation experiments.The thermal evolution of organic matter and its evolution products are closely related to the evolution trend of shale pores.

       

    • loading
    • Bernard, S., Horsfield, B., Schulz, H.M., et al., 2012.Geochemical Evolution of Organic-Rich Shales with Increasing Maturity:A STXM and TEM Study of the Posidonia Shale (Lower Toarcian, Northern Germany).Marine and Petroleum Geology, 31(1):70-89. https://doi.org/10.1016/j.marpetgeo.2011.05.010
      Cao, T.T., Deng, M., Liu, H., et al., 2018.Influences of Soluble Organic Matter on Reservoir Properties of Shale.Lithologic Reservoirs, 30(3):43-51 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/yxyqc201803006
      Chen, J., Xiao, X.M., 2014.Evolution of Nanoporosity in Organic-Rich Shales during Thermal Maturation.Fuel, 129:173-181. https://doi.org/10.1016/j.fuel.2014.03.058
      Chen, Z.H., Wang, T.G., Liu, Q., et al., 2015.Quantitative Evaluation of Potential Organic-Matter Porosity and Hydrocarbon Generation and Expulsion from Mudstone in Continental Lake Basins:A Case Study of Dongying Sag, Eastern China.Marine and Petroleum Geology, 66:906-924. https://doi.org/10.1016/j.marpetgeo.2015.07.027
      Clarkson, C.R., Solano, N., Bustin, R.M., et al., 2013.Pore Structure Characterization of North American Shale Gas Reservoirs Using USANS/SANS, Gas Adsorption, and Mercury Intrusion.Fuel, 103:606-616. https://doi.org/10.1016/j.fuel.2012.06.119
      Connan, J., 1974.Time-Temperature Relation in Oil Genesis.AAPG Bulletin, 58(12):2516-2521. https://www.onacademic.com/detail/journal_1000040489566010_c759.html
      Dai, F.Y., Hao, F., Hu, H.Y., et al., 2017.Occurrence Mechanism and Key Controlling Factors of Wufeng-Longmaxi Shale Gas, Eastern Sichuan Basin.Earth Science, 42(7):1185-1194 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.096
      Dong, C.M., Ma, C.F., Luan, G.Q., et al., 2015.Mud Shale Thermal Simulation Experiment and Diagenetic Evolution Model.Acta Sedimentologica Sinica, 33(5):1053-1061 (in Chinese with English abstract).
      Du, J.Y., Cheng, B., Liao, Z.W., 2014.Geochemical Characterization of Gaseous Pyrolysates from a Permian Kerogen of Santanghu Basin.Geochimica, 43(5):510-517 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx201405009
      Duan, D.D., Zhang, D.N., Ma, X.X., et al., 2016.Chemical and Structural Characterization of Thermally Simulated Kerogen and Its Relationship with Microporosity.Marine and Petroleum Geology, 89:4-13. https://doi.org/10.1016/j.marpetgeo.2016.12.016
      Fu, J.M., Sheng, G.Y., 1990.Coal-to-Hydrocarbon Geochemistry.Science Press, Beijing, 41-45 (in Chinese).
      Guo, H.J., 2017.Pore Structure and Thermal Evolution of Yanchang Shales from Southeastern Ordos Basin (Dissertation).Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou (in Chinese with English abstract).
      Guo, H.J., Wang, X.Z., Zhang, L.X., et al., 2014.Adsorption of N2 and CO2 on Mature Shales before and after Extraction and Its Implication for Investigations of Pore Structures.Geochimica, 43(4):408-414 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX201404011.htm
      Hou, Y.G., He, S., Wang, J.G., et al., 2015.Preliminary Study on the Pore Characterization of Lacustrine Shale Reservoirs Using Low Pressure Nitrogen Adsorption and Field Emission Scanning Electron Microscopy Methods:A Case Study of the Upper Jurassic Emuerhe Formation, Mohe Basin, Northeastern China.Canadian Journal of Earth Sciences, 52(5):294-306. https://doi.org/10.1139/cjes-2014-0188
      Hu, H.Y., 2013.Porosity Evolution of Organic-Rich Shale with Thermal Maturity Increasing.Acta Petrolei Sinica, 34(5):820-825 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-SYXB201305002.htm
      Katz, B.J., Arango, I., 2018.Organic Porosity:A Geochemist's View of the Current State of Understanding.Organic Geochemistry, 123:1-16. https://doi.org/10.1016/j.orggeochem.2018.05.015
      Kuila, U., Prasad, M., 2013.Specific Surface Area and Pore-Size Distribution in Clays and Shales.Geophysical Prospecting, 61(2): 341-362.https: //doi.org/10.1111/1365-2478.12028
      Li, M.Y., Zhan, J.H., Tian, Y., et al., 2017.Reaction Characteristics of Intermediate Product during Oil Shale Pyrolysis.The Chinese Journal of Process Engineering, 17(6):1316-1321 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgyj201706030
      Loucks, R.G., Reed, R.M., 2014.Scanning-Electron-Microscope Petrographic Evidence for Distinguishing Organic-Matter Pores Associated with Depositional Organic Matter versus Migrated Organic Matter in Mudrocks.Gulf Coast Association of Geological Societies Transactions, 3:51-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0214853297
      Lu, J.M., Ruppel, S.C., Rowe, H.D., 2015.Organic Matter Pores and Oil Generation in the Tuscaloosa Marine Shale.AAPG Bulletin, 99(2):333-357. https://doi.org/10.1306/08201414055
      Ma, Z.L., Zheng, L.J., Xu, X.H., et al., 2017.Thermal Simulation Experiment on Formation and Evolution of Organic Pores in Organic-Rich Shale.Acta Petrolei Sinica, 38(1):23-30 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201701003
      Mastalerz, M., Drobniak, A., Stankiewicz, A.B., 2018.Origin, Properties, and Implications of Solid Bitumen in Source-Rock Reservoirs:A Review.International Journal of Coal Geology, 195:14-36. https://doi.org/10.1016/j.coal.2018.05.013
      Neaman, A., Pelletier, M., Villieras, F., 2003.The Effects of Exchanged Cation, Compression, Heating and Hydration on Textural Properties of Bulk Bentonite and Its Corresponding Purified Montmorillonite.Applied Clay Science, 22(4):153-168. https://doi.org/10.1016/s0169-1317(02)00146-1
      Pollastro, R.M., 2007.Total Petroleum System Assessment of Undiscovered Resources in the Giant Barnett Shale Continuous (Unconventional) Gas Accumulation, Fort Worth Basin, Texas.AAPG Bulletin, 91(4):551-578. https://doi.org/10.1306/06200606007
      Ross, D.J.K., Bustin, R.M., 2009.The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs.Marine and Petroleum Geology, 26(6):916-927. https://doi.org/10.1016/j.marpetgeo.2008.06.004
      Tang, X., Zhang, J.C., Jin, Z.J., et al., 2015.Experimental Investigation of Thermal Maturation on Shale Reservoir Properties from Hydrous Pyrolysis of Chang 7 Shale, Ordos Basin.Marine and Petroleum Geology, 64:165-172. https://doi.org/10.1016/j.marpetgeo.2015.02.046
      Waples, D.W., 1980.Time and Temperature in Petroleum Formation:Application of Lopatin's Method to Petroleum Exploration.AAPG Bulletin, 64(6):916-926.doi: 10.1306/2f9193d2-16ce-11d7-8645000102c1865d
      Wei, M.M., Xiong, Y.Q., Zhang, L., et al., 2016.The Effect of Sample Particle Size on the Determination of Pore Structure Parameters in Shales.International Journal of Coal Geology, 163:177-185. https://doi.org/10.1016/j.coal.2016.07.013
      Wu, S.T., Zhu, R.K., Cui, J.G., et al., 2015.Characteristics of Lacustrine Shale Porosity Evolution, Triassic Chang 7 Member, Ordos Basin, NW China.Petroleum Exploration and Development, 42(2):185-195. https://doi.org/10.1016/s1876-3804(15)30005-7
      Xue, L.H., Yang, W., Zhong, J.A., et al., 2015.Pore Evolution of the Organic-Rich Shale from Simulated Experiment with Geological Constrains, Samples from Yanchang Formation in Ordos Basin.Acta Geologica Sinica, 89(5):970-978 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201505011.htm
      Yang, F., Ning, Z.F., Kong, D.T., et al., 2013.Pore Structure of Shales from High Pressure Mercury Injection and Nitrogen Adsorption Method.Natural Gas Geoscience, 24(3):450-455 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201303003
      Zargari, S., Canter, K.L., Prasad, M., 2015.Porosity Evolution in Oil-Prone Source Rocks.Fuel, 153:110-117. https://doi.org/10.1016/j.fuel.2015.02.072
      Zhai, G.Y., Wang, Y.F., Bao, S.J., et al., 2017.Major Factors Controlling the Accumulation and High Productivity of Marine Shale Gas and Prospect Forecast in Southern China.Earth Science, 42(7):1057-1068 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.085
      Zhang, L., Xiong, Y.Q., Li, Y., et al., 2017.DFT Modeling of CO2 and Ar Low-Pressure Adsorption for Accurate Nanopore Structure Characterization in Organic-Rich Shales.Fuel, 204:1-11. https://doi.org/10.1016/j.fuel.2017.05.046
      Zhao, J.L., Tang, D.Z., Xu, H., et al., 2015.Fine Characterization of the Shale Micropore Structures Based on the Carbon Dioxide Adsorption Experiment.Petroleum Geology and Oilfield Development in Daqing, 34(5):156-161 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqsydzykf201505030
      Zou, C.N., Dong, D.Z., Wang, Y.M., et al., 2016.Shale Gas in China:Characteristics, Challenges and Prospects (Ⅱ).Petroleum Exploration and Development, 43(2):166-178 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SKYK201602003.htm
      曹涛涛, 邓模, 刘虎, 等, 2018.可溶有机质对泥页岩储集物性的影响.岩性油气藏, 30(3):43-51. http://d.old.wanfangdata.com.cn/Periodical/yxyqc201803006
      戴方尧, 郝芳, 胡海燕, 等, 2017.川东焦石坝五峰-龙马溪组页岩气赋存机理及其主控因素.地球科学, 42(7):1185-1194. https://doi.org/10.3799/dqkx.2017.096
      董春梅, 马存飞, 栾国强, 等, 2015.泥页岩热模拟实验及成岩演化模式.沉积学报, 33(5):1053-1061. http://d.old.wanfangdata.com.cn/Periodical/cjxb201505021
      杜军艳, 程斌, 廖泽文, 2014.三塘湖盆地二叠系干酪根热模拟气体产物的地球化学特征.地球化学, 43(5):510-517. http://d.old.wanfangdata.com.cn/Periodical/dqhx201405009
      傅家谟, 盛国英, 1990.煤成烃地球化学.北京:科学出版社, 41-45.
      郭慧娟, 2017.鄂尔多斯盆地东南部延长组页岩的孔隙结构与热演化特征(博士学位论文).广州: 中国科学院广州地球化学研究所. http://cdmd.cnki.com.cn/Article/CDMD-80165-1017074623.htm
      郭慧娟, 王香增, 张丽霞, 等, 2014.抽提前/后成熟页岩对氮气、二氧化碳的吸附特征及其对孔隙研究的意义.地球化学, 43(4):408-414. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx201404011
      胡海燕, 2013.富有机质Woodford页岩孔隙演化的热模拟实验.石油学报, 34(5):820-825. http://d.old.wanfangdata.com.cn/Periodical/syxb201305002
      李梦雅, 战金辉, 田勇, 等, 2017.油页岩热解中间产物的反应特性.过程工程学报, 17(6):1316-1321. http://d.old.wanfangdata.com.cn/Periodical/hgyj201706030
      马中良, 郑伦举, 徐旭辉, 等, 2017.富有机质页岩有机孔隙形成与演化的热模拟实验.石油学报, 38(1):23-30. http://d.old.wanfangdata.com.cn/Periodical/syxb201701003
      薛莲花, 杨巍, 仲佳爱, 等, 2015.富有机质页岩生烃阶段孔隙演化——来自鄂尔多斯延长组地质条件约束下的热模拟实验证据.地质学报, 89(5):970-978. doi: 10.3969/j.issn.0001-5717.2015.05.011
      杨峰, 宁正福, 孔德涛, 等, 2013.高压压汞法和氮气吸附法分析页岩孔隙结构.天然气地球科学, 24(3):450-455. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201303003
      翟刚毅, 王玉芳, 包书景, 等, 2017.我国南方海相页岩气富集高产主控因素及前景预测.地球科学, 42(7):1057-1068. https://doi.org/10.3799/dqkx.2017.085
      赵俊龙, 汤达祯, 许浩, 等, 2015.基于二氧化碳吸附实验的页岩微孔结构精细表征.大庆石油地质与开发, 34(5):156-161. doi: 10.3969/J.ISSN.1000-3754.2015.05.030
      邹才能, 董大忠, 王玉满, 等, 2016.中国页岩气特征、挑战及前景(二).石油勘探与开发, 43(2):166-178. http://d.old.wanfangdata.com.cn/Periodical/syktykf201602002
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(2)

      Article views (5392) PDF downloads(34) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return