• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 6
    Jun.  2019
    Turn off MathJax
    Article Contents
    Yan Jiangyong, Zheng Hongwei, He Rizheng, Li Yulan, Li Yao, Niu Xiao, 2019. Low Velocity Layer Investigation in Central Qiangtang in North Tibet and Its Dynamic Implications. Earth Science, 44(6): 1784-1796. doi: 10.3799/dqkx.2018.355
    Citation: Yan Jiangyong, Zheng Hongwei, He Rizheng, Li Yulan, Li Yao, Niu Xiao, 2019. Low Velocity Layer Investigation in Central Qiangtang in North Tibet and Its Dynamic Implications. Earth Science, 44(6): 1784-1796. doi: 10.3799/dqkx.2018.355

    Low Velocity Layer Investigation in Central Qiangtang in North Tibet and Its Dynamic Implications

    doi: 10.3799/dqkx.2018.355
    • Received Date: 2018-08-27
    • Publish Date: 2019-06-15
    • In order to investigate the distribution characteristics of the low velocity layer in the central Qiangtang basin, this study conducted the TITAN-Ⅰ teleseismic receiver functions across the Qiangtang basin. And the signal-to-noise ratio of the receiver function was improved by the phase filtering technique in the time frequency domain. Finally, the one-dimensional S wave velocity structure in the depth of 100 km below each station is obtained by the nonlinear inversion of conjugate gradients algorithm for the complex spectrum ratios of receiver function. The results show that the phase filtering method in the time frequency domain can significantly improve the signal-to-noise ratio and make the one-dimensional S wave velocity structure of the subsequent inversion more reliable. The Moho depth of the Qiangtang basin is 58 ±6 km, and where has a higher Poisson's ratio. The low velocity layer in the mid-lower crust is widely distributed. The transverse discontinuity is discontinuous, and the depth is between 20 and 30 km, the thickness of the layer is 6-12 km, the shear wave velocity is 3.4±0.1 km/s. In some areas, there is a thin layer of 4 km thin layer in the mid-upper crust with a depth of 10 km. The low velocity layer in the mid-lower crust of the Qiangtang basin is caused by the deep mantle derived magma upwelling along the tectonic weak zone, resulting in partial melting in the mid-lower crust and upper mantle.

       

    • loading
    • Ammon, C. J., Randall, G. E., Zandt, G., 1990. On the Nonuniqueness of Receiver Function Inversions. Journal of Geophysical Research, 95(B10):15303-15318. doi: 10.1029/JB095iB10p15303
      Ammon, C.J., Zandt, G., 1993.Receiver Structure beneath the Southern Mojave Block, California. Bulletin of the Seismological Society of America, 83(3):737-755.
      Chi, X.G., Zhang, R., Fan, L.F., et al., 2017.The Formatting Mechanism of Cenozoic Basaltic Volcanic Rocks in the Northern Tibet:Continental Subduction and Slab Breakoff Driven by Mantle Convection and Upwelling. Acta Petrologica Sinica, 33(10):3011-3026(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201710003.htm
      Cui, Z. Z., Yin, Z. X., Gao, E. Y., et al., 1990. The Structure and Tectonics of the Crust and Their Relation with Earthquakes in the Qinghai-Xizang Plateau.Acta Geoscientica Sinica, 11(2):215-232(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB199002020.htm
      Gao, R., Chen, C., Lu, Z.W., et al., 2013.New Constraints on Crustal Structure and Moho Topography in Central Tibet Revealed by SinoProbe Deep Seismic Reflection Profiling. Tectonophysics, 606:160-170. https://doi.org/10.1016/j.tecto.2013.08.006
      Gao, X., Wang, W.M., Yao, Z.X., et al., 2005.Crustal Structure of China Mainland and Its Adjacent Regions. Chinese Journal of Geophysics, 48(3):591-601(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200503017
      Guo, X.F., Zhang, Y.C., Cheng, Q.Y., et al., 1990.Magnetotelluric Studies along Yadong-Golmud Geosciences Transect in Qinghai-Xizang Plateau.Acta Geoscientia Sinica, 22(2):191-202(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqxb199002018.htm
      Haines, S. S., Klemperer, S. L., Brown, L., et al., 2003. INDEPTH Ⅲ Seismic Data:From Surface Observations to Deep Crustal Processes in Tibet. Tectonics, 22(1):1001. https://doi.org/10.1029/2001tc001305
      He, R.Z., Gao, R., Hou, H.S., et al., 2009.Deep Structure of the Central Uplift Belt in the Qiangtang Terrane, Tibet Plateau from Broadband Seismic Observations and Its Implications. Progress in Geophysics, 24(3):900-908(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz200903012
      Huang, J. J., 2001. Structural Characteristics of the Basement of the Qiangtang Basin. Acta Geologica Sinica, 75(3):333-337(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Conference/8633148
      Jiménez-Munt, I., Fernàndez, M., Vergés, J., et al., 2008.Lithosphere Structure underneath the Tibetan Plateau Inferred from Elevation, Gravity and Geoid Anomalies.Earth and Planetary Science Letters, 267(1-2):276-289. https://doi.org/10.1016/j.epsl.2007.11.045
      Kind, R., Ni, J., Zhao, W., et al., 1996. Evidence from Earthquake Data for a Partially Molten Crustal Layer in Southern Tibet. Science, 274(5293):1692-1694. https://doi.org/10.1126/science.274.5293.1692
      Li, C., Dong, Y.S., Zhai, Q.G., et al., 2008.Discovery of Eopaleozoic Ophiolite in the Qiangtang of Tibet Plateau:Evidence from SHRIMP U-Pb Dating and Its Tectonic Implications.Acta Petrologica Sinica, 24(1):31-36(in Chinese with English abstract).
      Li, Y.H., Tian, X.B., Wu, Q.J., et al., 2006.The Poisson Ratio and Crustal Structure of the Central Qinghai-Xizang Inferred from INDEPTH-Ⅲ Teleseismic Waveforms:Geological and Geophysical Implications. Chinese Journal of Geophysics, 49(4):1037-1044(in Chinese with English abstract).
      Liu, Q, Y., 1996.Maximal Likelihood Estimation and Nonlinear Inversion of the Complex Receiver Runction Spectrum Ratio. Chinese Journal of Geophysics, 39(4):500-511(in Chinese with English abstract).
      Liu., G.C., Shang, X.F., He, R.Z., et al., 2014.Topography of Moho beneath the Central Qiangtang in North Tibet and Its Geodynamic Implication.Chinese Journal of Geophysics, 57(7):2043-2053(in Chinese with English abstract).
      Mechie, J., Sobolev, S.V., Ratschbacher, L., et al., 2004.Precise Temperature Estimation in the Tibetan Crust from Seismic Detection of the α-β Quartz Transition.Geology, 32(7):601-604. https://doi.org/10.1130/g20367.1
      Nelson, K. D., Zhao, W., Brown, L. D., et al., 1996. Partially Molten Middle Crust beneath Southern Tibet:Synthesis of Project INDEPTH Results.Science, 274(5293):1684-1688. https://doi.org/10.1126/science.274.5293.1684
      Qu, Z.D., He, R.Z., Zhang, X.H., et al., 2017.The Time-Frequency Domain Phase Filter and Its Application in Noise Suppression of Teleseismic Receiver Functions. Chinese Journal of Geophysics, 60(4):1389-1397(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201704013.htm
      Replumaz, A., Negredo, A.M., Guillot, S., et al., 2010.Multiple Episodes of Continental Subduction during India/Asia Convergence:Insight from Seismic Tomography and Tectonic Reconstruction.Tectonophysics, 483(1-2):125-134. https://doi.org/10.1016/j.tecto.2009.10.007
      Shi, D. N., Zhao, W. J., Brown, L., et al., 2004. Detection of Southward Intracontinental Subduction of Tibetan Lithosphere along the Bangong-Nujiang Suture by P-to-S Converted Waves. Geology, 32(3):209. https://doi.org/10.1130/g19814.1
      Stockwell, R.G., 1999.S-Transform Analysis of Gravity Wave Activity from a Small Scale Network of Airglow Imagers.The University of Western Ontario, Canada, 4662.
      Sun, M., Chen, W., Qu, X.M., et al., 2018.Petrogenesis of the Late Cretaceous Jiangba Volcanic Rocks and Its Indications for the Thinning of the Thickened Crust in Xiongmei Area, Tibet.Earth Science, 43(9):3234-3251(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201809022
      Tarantola, A. P., 1987. Inverse Problem Theory:Methods for Data Fitting and Model Parameter Estimation.Physics of the Earth & Planetary Interiors, 57(3):350-351.
      Teng, J.W., Ruan, X.M., Zhang, Y.Q., et al., 2012.The Stratifficational Velocity Structure of Crust and Covering Strata of Upper Mantle and the Orbit of Deep Interaquifer Substance Locus of Movement for Tibetan Plateau.Acta Petrologica Sinica, 28(12):4077-4100(in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201212022.htm
      Wang, C.S., Hu, C.Z., Wu, R.Z., et al., 1987.Significance of the Discovery of Chasang-Chabu Rift in Northern Xizang(Tibet). Journal of Chengdu College of Geology, 14(2):33-46(in Chinese with English abstract).
      Wang, W., Gao, X., Li, Y. Y., et al., 2011. Crustal Velocity Structure of S-Wave beneath Tibetan Plateau with Transform Function Method-Hi-Climb Profile. Chinese Journal of Geophysics, 54(6):766-776. https://doi.org/10.1002/cjg2.1660
      Watanabe, T., 1993.Effects of Water and Melt on Seismic Velocities and Their Application to Characterization of Seismic Reflectors. Geophysical Research Letters, 20(24):2933-2936. https://doi.org/10.1029/93gl03170
      Wu, G. J., Xiao, X. C., Li, T. D., 1989. The Yadong-Golmud Geoscience Section on the Qinghai-Tibet Plateau. Acta Geologica Sinica, 63(4):285-296(in Chinese with Eng-lish abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE198904000.htm
      Wu, Q.J., Zeng, R.S., 1998.The Crustal Structure of QinghaiXizang Plateau Inferred from Broadband Teleseismic Waveform. Chinese Journal of Geophysics, 41(5):669-679(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX199805010.htm
      Wu, W., Liu, Q. Y., He, R. Z., et al., 2017. Waveform Inversion of S-Wave Velocity Model in the Central Qiangtang in North Tibet and Its Geological Implications. Chinese Journal of Geophysics, 60(3):941-952(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQWX201703010.htm
      Zhang, S. Y., Zhang, X. J., 1996. Magnetotelluric Sounding in the Qiangtang Basin of Xizang (Tibet).Earth Science, 21(2):98-102(in Chinese with English abstract).
      Zhao, Z., Lu, L., Wu, Z.H., et al., 2018.Charactreistics of the Late Triassic Jiangai Granite Mass and the Slab Breakoff in Central Qiangtang, Tibet. Earth Science, 43(Suppl.1):225-242(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S1021.htm
      Zou, C.Q., He, R.Z., Gao, R., et al., 2012.Deep Structure of the Central Uplift Belt in the Qiangtang Terrane Tibetan Plateau from Teleseismic P-Wave Tomography.Chinese Science Bulletin, 57(28-29):2729-2739(in Chinese). doi: 10.1360/972011-2430
      迟效国, 张蕊, 范乐夫, 等, 2017.藏北新生代玄武质火山岩起源的深部机制:大陆俯冲和板片断离驱动的地幔对流上涌模式.岩石学报, 33(10):3011-3026. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201710003
      崔作舟, 尹周勋, 高恩元, 等, 1990.青藏高原地壳结构构造及其与地震的关系.地球学报, 11(2):221-232. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000001812316
      高星, 王卫民, 姚振兴, 等, 2005.中国及邻近地区地壳结构.地球物理学报, 48(3):591-601. doi: 10.3321/j.issn:0001-5733.2005.03.017
      郭新峰, 张元丑, 程庆云, 等, 1990.青藏高原亚东-格尔木地学断面岩石圈电性研究.地球学报, 22(2):191-202. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000002240792
      贺日政, 高锐, 侯贺晟, 等, 2009.羌塘中央隆起带深部结构特征研究及其意义.地球物理学进展, 24(3):900-908. doi: 10.3969/j.issn.1004-2903.2009.03.012
      黄继钧, 2001.羌塘盆地基底构造特征.地质学报, 75(3):333-337. doi: 10.3321/j.issn:0001-5717.2001.03.006
      李才, 董永胜, 翟庆国, 等, 2008.青藏高原羌塘早古生代蛇绿岩:堆晶辉长岩的锆石SHRIMP定年及其意义.岩石学报, 24(1):31-36. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200801002
      李永华, 田小波, 吴庆举, 等, 2006.青藏高原INDEPTH-Ⅲ剖面地壳厚度与泊松比:地质与地球物理含义.地球物理学报, 49(4):1037-1044. doi: 10.3321/j.issn:0001-5733.2006.04.015
      刘国成, 尚学峰, 贺日政, 等, 2014.藏北羌塘盆地中部莫霍面形态及其动力学成因.地球物理学报, 57(7):2043-2053.
      刘启元, 1996.接收函数复谱比的最大或然性估计及非线性反演.地球物理学报, 39(4):500-511. doi: 10.3321/j.issn:0001-5733.1996.04.008
      曲中党, 贺日政, 张训华, 等, 2017.时频域相位滤波在远震接收函数噪声压制中的应用.地球物理学报, 60(4):1389-1397. http://www.cnki.com.cn/Article/CJFDTotal-DQWX201704013.htm
      孙渺, 陈伟, 曲晓明, 等, 2018.西藏雄梅地区晚白垩世江巴组火山岩岩石成因及对加厚地壳减薄的指示.地球科学, 43(9):3234-3251. http://earth-science.net/WebPage/Article.aspx?id=3939
      滕吉文, 阮小敏, 张永谦, 等, 2012.青藏高原地壳与上地幔成层速度结构与深部层间物质的运移轨迹.岩石学报, 28(12):4077-4100. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201212022
      王成善, 胡承祖, 吴瑞忠, 等, 1987.西藏北部查桑-茶布裂谷的发现及其地质意义.成都地质学院学报, 14(2):33-46. http://www.cnki.com.cn/Article/CJFDTotal-CDLG198702003.htm
      吴功建, 肖序常, 李廷栋, 1989.青藏高原亚东-格尔木地学断面.地质学报, 63(4):285-296. doi: 10.3321/j.issn:0001-5717.1989.04.003
      吴庆举, 曾融生, 1998.用宽频带远震接收函数研究青藏高原的地壳结构.地球物理学报, 41(5):669-679. doi: 10.3321/j.issn:0001-5733.1998.05.010
      吴蔚, 刘启元, 贺日政, 等, 2017.羌塘盆地中部地区地壳S波速度结构及构造意义.地球物理学报, 60(3):941-952. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201703010.htm
      张胜业, 张先觉, 1996.西藏羌塘盆地大地电磁测深研究.地球科学, 21(2):98-102. http://earth-science.net/WebPage/Article.aspx?id=369
      赵珍, 陆露, 吴珍汉, 等, 2018.羌塘中部晚三叠世江爱岩体特征与板片断离作用.地球科学, 43(增刊1):225-242. http://earth-science.net/WebPage/Article.aspx?id=3961
      邹长桥, 贺日政, 高锐, 等, 2012.远震P波层析成像研究羌塘中央隆起带深部结构.科学通报, 57(28-29):2729-2739. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201228009
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(2)

      Article views (4910) PDF downloads(49) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return