• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 6
    Jun.  2019
    Turn off MathJax
    Article Contents
    Zhao Xiaoyan, Yang Zhusen, Zhang Xiong, Pei Yingru, 2019. In Situ Trace Element Analysis of Pyrite from Bangbu Orogenic Gold Deposit and Its Metallogenic Significance. Earth Science, 44(6): 2052-2062. doi: 10.3799/dqkx.2018.361
    Citation: Zhao Xiaoyan, Yang Zhusen, Zhang Xiong, Pei Yingru, 2019. In Situ Trace Element Analysis of Pyrite from Bangbu Orogenic Gold Deposit and Its Metallogenic Significance. Earth Science, 44(6): 2052-2062. doi: 10.3799/dqkx.2018.361

    In Situ Trace Element Analysis of Pyrite from Bangbu Orogenic Gold Deposit and Its Metallogenic Significance

    doi: 10.3799/dqkx.2018.361
    • Received Date: 2018-08-13
    • Publish Date: 2019-06-15
    • The Bangbu deposit is the only large orogenic gold deposit that is being exploited with the highest degree of research in the Yurlung-Zangbo suture zone. In order to understand the source, transportation and precipitation of Au in the Bangbu deposit, in situ microanalysis technique was used to obtain the trace elements compositions of Au-bearing pyrite from different generations. In situ trace elements results show that the siderophile elements Co and Ni mainly enter the lattice of pyrite to substitute Fe while As and Se substitute S in the form of isomorphism. Gold is distributed evenly in different generations of pyrite in the form of nanoparticles. The Co/Ni ratios of pyrite from three generations of Au-bearing quartz veins are all less than 1 which preserve the information of pyrite of the surrounding rocks indicating a kind of sedimentation or sedimentation-reformation origin. As and Se play important roles in the migration and accumulation of Au as Au has obvious positive correlation with As and Se.

       

    • loading
    • Agangi, A., Hofmann, A., Wohlgemuth-Ueberwasser, C. C., 2013. Pyrite Zoning as a Record of Mineralization in the Ventersdorp Contact Reef, Witwatersrand Basin, South Africa. Economic Geology, 108(6): 1243-1272. https://doi.org/10.2113/econgeo.108.6.1243
      Belissont, R., Boiron, M.C., Luais, B., et al., 2014.LA-ICP-MS Analyses of Minor and Trace Elements and Bulk Ge Isotopes in Zoned Ge-Rich Sphalerites from the Noailhac-Saint-Salvy Deposit (France):Insights into Incorporation Mechanisms and Ore Deposition Processes. Geochimica et Cosmochimica Acta, 126:518-540. https://doi.org/10.1016/j.gca.2013.10.052
      Bralia, A., Sabatini, G., Troja, F., 1979.A Revaluation of the Co/Ni Ratio in Pyrite as Geochemical Tool in Ore Genesis Problems.Mineralium Deposita, 14(3):353-374. http://www.sciencedirect.com/science/article/pii/S1053811905001527
      Brill, B., 1989.Trace-Element Contents and Partitioning of Elements in Ore Minerals from the CSA Cu-Pb-Zn Deposit, Australia.Canadian Mineralogist, 27:263-274.
      Chen, L.M., Song, X.Y., Danyushevsky, L.V., et al., 2015.A Laser Ablation ICP-MS Study of Platinum-Group and Chalcophile Elements in Base Metal Sulfide Minerals of the Jinchuan Ni-Cu Sulfide Deposit, NW China.Ore Geology Reviews, 65:955-967. https://doi.org/10.1016/j.oregeorev.2014.07.011
      Cook, N.J., Chryssoulis, S.L., 1990.Concentrations of Invisible Gold in the Common Sulfides.The Canadian Mineralogist, 28(1):1-16.
      Cook, N.J., Ciobanu, C.L., Danyushevsky, L.V., et al., 2011. Minor and Trace Elements in Bornite and Associated Cu-(Fe)-Sulfides:A LA-ICP-MS Study Bornite Mineral Chemistry. Geochimica et Cosmochimica Acta, 75 (21): 6473-6496. https://doi.org/10.1016/j.gca.2011.08.021
      Cook, N. J., Ciobanu, C. L., Pring, A., et al., 2009. Trace and Minor Elements in Sphalerite: A LA-ICP-MS Study. Geochimica et Cosmochimica Acta, 73(16): 4761-4791. https://doi.org/10.1016/j.gca.2009.05.045
      Franchini, M., McFarlane, C., Maydagán, L., et al., 2015. Trace Metals in Pyrite and Marcasite from the Agua Rica Porphyry-High Sulfidation Epithermal Deposit, Catamarca, Argentina:Textural Features and Metal Zoning at the Porphyry to Epithermal Transition.Ore Geology Reviews, 66: 366-387. https://doi.org/10.1016/j.oregeorev.2014.10.022
      Gong, W., Jiang, X. D., 2017. Thermal Evolution History and Its Genesis of the Ailao Shan-Red River Fault Zone in the Ailao Shan and Day Nui Con Voi Massif during Oligocene-Early Miocene.Earth Science, 42(2):223-239(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201702005
      Hou, Z. Q., Cook, N. J., 2009. Metallogenesis of the Tibetan Collisional Orogen: A Review and Introduction to the Special Issue. Ore Geology Reviews, 36(1-3): 2-24. https://doi.org/10.1016/j.oregeorev.2009.05.001
      Hou, Z. Q., Wang, E. Q., 2008. Metallogenesis of the Indo-Asian Collisional Orogen:New Advances.Acta Geoscientica Sinica, 29(3): 275-292(in Chinese with English abstract).
      Jiang, S.H., Nie, F.J., Hu, P., et al., 2009.Mayum:An Orogenic Gold Deposit in Tibet, China. Ore Geology Reviews, 36(1-3): 160-173. https://doi.org/10.1016/j.oregeorev.2009.03.006
      Large, R.R., Bull, S.W., Maslennikov, V.V., 2011.A Carbonaceous Sedimentary Source-Rock Model for Carlin-Type and Orogenic Gold Deposits. Economic Geology, 106(3): 331-358. https://doi.org/10.2113/econgeo.106.3.331
      Leng, C. B., 2017. Genesis of Hongshan Cu Polymetallic Large Deposit in the Zhongdian Area, NW Yunnan:Constraints from LA-ICP-MS Trace Elements of Pyrite and Pyrrhotite. Earth Science Frontiers, 24(6): 162-175(in Chinese with English abstract).
      Lin, Y., Cook, N.J., Ciobanu, C.L., et al., 2011.Trace and Minor Elements in Sphalerite from Base Metal Deposits in South China: A LA-ICP-MS Study. Ore Geology Reviews, 39(4): 188-217. https://doi.org/10.1016/j.oregeorev.2011.03.001
      Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Mikucki, E.J., Ridley, J.R., 1993.The Hydrothermal Fluid of Archæan Lode-Gold Deposits at Different Metamorphic Grades: Compositional Constraints from Ore and Wallrock Alteration Assemblages. Mineralium Deposita, 28 (6):469-481. https://doi.org/10.1007/bf02431603
      Mo, X. X., Zhao, Z. D., Deng, J. F., et al., 2003. Response of Volcanism to the India-Asia Collision. Earth Science Frontiers, 10(3): 135-148(in Chinese with English abstract).
      Pals, D. W., Spry, P. G., Chryssoulis, S., 2003. Invisible Gold and Tellurium in Arsenic-Rich Pyrite from the Emperor Gold Deposit, Fiji:Implications for Gold Distribution and Deposition.Economic Geology, 98(3): 479-493. https://doi.org/10.2113/gsecongeo.98.3.479
      Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012.Tectonic Evolution of the Qinghai-Tibet Plateau.Journal of Asian Earth Sciences, 53: 3-14. https://doi.org/10.1016/j.jseaes.2011.12.018
      Pei, Y. R., Sun, Q. Z., Zheng, Y. C., et al., 2016. Genesis of the Bangbu Orogenic Gold Deposit, Tibet: Evidence from Fluid Inclusion, Stable Isotopes, and Ar-Ar Geochronology. Acta Geologica Sinica (English Edition), 90(2): 722-737. https://doi.org/10.1111/1755-6724.12700
      Phillips, G.N., Evans, K.A., 2004.Role of CO2 in the Formation of Gold Deposits.Nature, 429:860-863. https://doi.org/10.1038/nature02644
      Phillips, G.N., Powell, R., 2010.Formation of Gold Deposits: A Metamorphic Devolatilization Model.Journal of Metamorphic Geology, 28(6): 689-718. https://doi.org/10.1111/j.1525-1314.2010.00887.x
      Reich, M., Kesler, S.E., Utsunomiya, S., et al., 2005.Solubility of Gold in Arsenian Pyrite.Geochimica et Cosmochim ica Acta, 69(11):2781-2796. https://doi.org/10.1016/j.gca.2005.01.011
      Ridley, J. R., Diamond, L. W., 2000. Fluid Chemistry of Orogenic Lode Gold Deposits and Implications for Genetic Models.Reviews in Economic Geology, 13:141-162.
      Sun, Q. Z., Zheng, Y. C., Hou, Z. Q., et al., 2013. Genesis of Bangbu Orogenic Gold Deposit in Tibet: Constraints from Fluid Inclusions and Isotopic Composition. Mineral Deposits, 32(2): 353-366(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201302011.htm
      Sun, Q.Z., Zheng, Y.C., Li, W., et al., 2012.Study on the Occurrence State of Au in the Bangbu Orogenic Gold Deposit, Southern Tibet. Journal of East China Institute of Technology(Natural Science), 35(2): 136-142(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hddzxyxb201202006
      Sun, X. M., Shi, G. Y., Xiong, D. X., et al., 2007. Platinum Group Elements Geochemistry and Re-Os Isotopic Compositions of Daping Gold Deposit in Ailaoshan Gold Belt, Yunnan Province, China and Their Metallogenic Implications. Acta Geologica Sinica, 81(3): 394-404(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200703011
      Sun, X. M., Wei, H. X., Zhai, W., et al., 2016. Fluid Inclusion Geochemistry and Ar-Ar Geochronology of the Cenozoic Bangbu Orogenic Gold Deposit, Southern Tibet, China. Ore Geology Reviews, 74: 196-210. https://doi.org/10.1016/j.oregeorev.2015.11.021
      Sun, X. M., Zhang, Y., Xiong, D. X., et al., 2009. Crust and Mantle Contributions to Gold-Forming Process at the Daping Deposit, Ailaoshan Gold Belt, Yunnan, China. Ore Geology Reviews, 36(1-3): 235-249. https://doi.org/10.1016/j.oregeorev.2009.05.002
      Wei, H.X., Sun, X.M., Zhai, W., et al., 2010.He-Ar-S Isotopic Compositions of Ore-Forming Fluids in the Bangbu Large-Scale Gold Deposit in Southern Tibet, China.Acta Petrologica Sinica, 26(6): 1685-1691(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201006005
      Ye, T., Li, N., 2015.The Application of Pyrite LA-ICP-MS Trace Element Analysis to Gold Deposits. Chinese Journal of Geology, 50(4):1178-1199(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx201504010
      Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      Zhang, X., Deng, X.G., Yang, Z.S., et al., 2017.Genesis of the Gold Deposit in the Indus-Yarlung Tsangpo Suture Zone, Southern Tibet: Evidence from Geological and Geochemical Data. Acta Geologica Sinica(English Edition), 91(3): 947-970. https://doi.org/10.1111/1755-6724.13318
      Zhao, X.Y., Yang, Z.S., Hou, Z.Q., et al., 2019.The Structural Deformation Characteristics and the Control of Gold Mineralization of the Upper Triassic Flysch (Langjiexue Group) in Tibetan Plateau. Geological Journal, 54(3): 1331-1342. https://doi.org/10.1002/gj.3230
      Zhao, Z.H., Zhao, H.L., Yang, W.H., et al., 1987.Trace Element Geochemical Characteristics of Cambrian-Ordovician Boundary Strata in the Duibian and Wushan Profiles.Geochimica, 16(2):99-112(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000258178
      Zhou, F., Sun, X. M., Zhai, W., et al., 2011. Geochemistry of Ore-Forming Fluid and Metallogenic Mechanism for Zhemulang Gold Deposit in Southern Tibet, China. Acta Petrologica Sinica, 27(9): 2775-2785(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201109026.htm
      Zhou, T.F., Zhang, L.J., Yuan, F., et al., 2010.LA-ICP-MS in Situ Trace Element Analysis of Pyrite from the Xinqiao Cu-Au-S Deposit in Tongling, Anhui, and Its Constraints on the Ore Genesis. Earth Science Frontiers, 17 (2):306-319(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201002026
      Zhu, X.Q., Guo, X.W., Zhang, X.H., et al., 2018.Thermochronological Constraints on Cenozoic Tectonic Evolution of South-Central Qinghai-Tibet Plateau. Earth Science, 43 (6):1903-1920(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201806009
      宫伟, 姜效典, 2017.哀牢山-红河断裂带哀牢山-大象山段渐新世-早中新世热史演化及成因.地球科学, 42(2): 223-239. http://earth-science.net/WebPage/Article.aspx?id=3430
      侯增谦, 王二七, 2008.印度-亚洲大陆碰撞成矿作用主要研究进展.地球学报, 29(3):275-292. doi: 10.3321/j.issn:1006-3021.2008.03.003
      冷成彪, 2017.滇西北红山铜多金属矿床的成因类型:黄铁矿和磁黄铁矿LA-ICP-MS微量元素制约.地学前缘, 24 (6):162-175. http://d.old.wanfangdata.com.cn/Periodical/dxqy201706014
      莫宣学, 赵志丹, 邓晋福, 等, 2003.印度-亚洲大陆主碰撞过程的火山作用响应.地学前缘, 10(3):135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013
      孙清钟, 郑远川, 侯增谦, 等, 2013.西藏邦布石英脉型金矿床的成因:流体包裹体及氢-氧同位素证据.矿床地质, 32 (2):353-366. doi: 10.3969/j.issn.0258-7106.2013.02.010
      孙清钟, 郑远川, 李为, 等, 2012.西藏邦布造山型金矿金的赋存状态研究.东华理工大学学报(自然科学版), 35(2): 136-142. doi: 10.3969/j.issn.1674-3504.2012.02.006
      孙晓明, 石贵勇, 熊德信, 等, 2007.云南哀牢山金矿带大坪金矿铂族元素(PGE)和Re-Os同位素地球化学及其矿床成因意义.地质学报, 81(3):394-404. doi: 10.3321/j.issn:0001-5717.2007.03.011
      韦慧晓, 孙晓明, 翟伟, 等, 2010.藏南邦布大型金矿成矿流体He-Ar-S同位素组成及其成矿意义.岩石学报, 26(6): 1685-1691. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201006005
      叶甜, 李诺, 2015.黄铁矿原位LA-ICP-MS微量元素分析在金矿床中应用.地质科学, 50(4):1178-1199. doi: 10.3969/j.issn.0563-5020.2015.04.010
      赵振华, 赵惠兰, 杨蔚华, 等, 1987.碓边和武山寒武-奥陶系界线剖面微量元素地球化学特征.地球化学, 16(2): 99-112. doi: 10.3321/j.issn:0379-1726.1987.02.001
      周峰, 孙晓明, 翟伟, 等, 2011.藏南折木朗造山型金矿成矿流体地球化学和成矿机制.岩石学报, 27(9):2775-2785. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201109025
      周涛发, 张乐骏, 袁峰, 等, 2010.安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素LA-ICP-MS原位测定及其对矿床成因的制约.地学前缘, 17(2):306-319. http://d.old.wanfangdata.com.cn/Periodical/dxqy201002026
      朱晓青, 郭兴伟, 张训华, 等, 2018.青藏高原中-南部新生代构造演化的热年代学制约.地球科学, 43(6): 1903-1920. http://earth-science.net/WebPage/Article.aspx?id=3854
    • dqkx-44-6-2052-Table.pdf
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)

      Article views (5350) PDF downloads(115) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return