• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 6
    Jun.  2019
    Turn off MathJax
    Article Contents
    Guo Jing, Li Wenchang, Li Guangming, Jiao Yanjie, Liang Shengxian, 2019. Application of Multi-Scale Integrated Geophysical Method in Prospecting Prediction of Zhaxikang Pb-Zn-Sb-Au Polymetallic Deposit. Earth Science, 44(6): 2129-2142. doi: 10.3799/dqkx.2018.362
    Citation: Guo Jing, Li Wenchang, Li Guangming, Jiao Yanjie, Liang Shengxian, 2019. Application of Multi-Scale Integrated Geophysical Method in Prospecting Prediction of Zhaxikang Pb-Zn-Sb-Au Polymetallic Deposit. Earth Science, 44(6): 2129-2142. doi: 10.3799/dqkx.2018.362

    Application of Multi-Scale Integrated Geophysical Method in Prospecting Prediction of Zhaxikang Pb-Zn-Sb-Au Polymetallic Deposit

    doi: 10.3799/dqkx.2018.362
    • Received Date: 2018-07-06
    • Publish Date: 2019-06-15
    • A crustal scale extension occurred in the post-collisional stage of the Tibetan Plateau, and tectonic-thermal events closely related to stretching, such as leucogranites, north-south and east-west faults, were developed in the Tethyan Himalayan and developed series of Pb-Zn-Sb-Au polymetallic deposits. The Zhaxikang Pb-Zn-Sb-Au polymetallic deposit is the only superlarge polymetallic deposit in the belt. This paper applies a multi-scale integrated geophysical method to Zhaxikang's prospecting prediction and can provide reference for the exploration of deposits in the Tethys Himalayan Pb-Zn-Sb-Au metallogenic belt. Firstly, the spatial relationship of tectonic-thermal events was initially established by the north-south MT section (72 km long and 1 km from the reference point) crossing the Cuonadong dome and the South Tibet detachment system (STDS). Combined with the time relationship of regional tectonic-thermal events, a possible tectonic-thermal coupling mineralization was proposed, which provides a basis for the geophysical exploration of Zhaxikang. Secondly, through the joint interpretation of 400 km2, 1:50 000 regional gravity (line distance 500 m, dot distance 400 m) and MT(dot distance 400 m) shallow information, the fault system of the Zhaxiang assembly area was established. Finally, the Zhaxikang polymetallic ore body was delineated by the joint interpretation of the 9 km2 IP measurement (line distance 100 m, dot distance 40 m) and the AMT profile(dot distance 50 m) and gravity(dot distance 20 m).

       

    • loading
    • Aikman, A. B., Harrison, T. M., Lin, D., 2008. Evidence for Early (>44 Ma) Himalayan Crustal Thickening, Tethy-an Himalaya, Southeastern Tibet. Earth and Planetary Science Letters, 274(1-2):14-23. https://doi.org/10.1016/j.epsl.2008.06.038
      Aoya, M., Wallis, S.R., Terada, K., et al., 2005.North-South Extension in the Tibetan Crust Triggered by Granite Emplacement. Geology, 33(11):853-856. https://doi.org/10.1130/g21806.1
      Beck, R. A., Burbank, D. W., Sercombe, W. J., et al., 1995.Stratigraphic Evidence for an Early Collision between Northwest India and Asia.Nature, 373:55-58. doi: 10.1038/373055a0
      Blisniuk, P.M., Hacker, B.R., Glodny, J., et al., 2001.Normal Faulting in Central Tibet since at Least 13.5 Ma Ago.Nature, 412(6847):628-632. doi: 10.1038/35088045
      Brown, L. D., Zhao, W., Nelson, K. D., et al., 1996. Bright Spots, Structure, and Magmatism in Southern Tibet from INDEPTH Seismic Reflection Profiling. Science, 274(5293):1688-1690. doi: 10.1126/science.274.5293.1688
      Burchfiel, B. C., Chen, Z. L., Hodges, K. V., et al., 1992. The South Tibetan Detachment System, Himalayan Orogen:Extension Contemporaneous with and Parallel to Short-ening in a Collisional Mountain Belt.The Geological So-ciety of America, 269:1-41. doi: 10.1130/SPE269
      Burg, J.P., Guiraud, M., Chen, G.M., et al., 1984.Himalayan Metamorphism and Deformations in the North Himala-yan Belt (Southern Tibet, China). Earth and Planetary Science Letters, 69(2):391-400. doi: 10.1016/0012-821X(84)90197-3
      Chen, C. Y., Wang, S. J., Wang, G. R., et al., 1996. Cenozoic Extensional Tectonic System Control of the Under-ground Water in Ordovician Limestone in East Weibei, Shaanxi Province.Journal of Geomechanics, 2(4):21-30(in Chinese with English abstract).
      Chen, Z. L., Liu, Y. P., 1996. The South Tibetan Detachment System. Tethyan Geology, (20):32-51(in Chinese with English abstract). doi: 10.1016-j.jsg.2007.08.007/
      Coleman, M., Hodges, K., 1995.Evidence for Tibetan Plateau Uplift before 14 Ma Ago from a New Minimum Age for East-West Extension. Nature, 374:49-52. https://doi.org/10.1038/374049a0
      Constable, S.C., Parker, R.L., Constable, C.G., 1987.Occam's Inversion:A Practical Algorithm for Generating Smooth Models from Electromagnetic Sounding Data. Geophys-ics, 52(3):289-300. https://doi.org/10.1190/1.1442303
      Cox, S. F., 1995. Faulting Processes at High Fluid Pressures:An Example of Fault Valve Behavior from the Wattle Gully Fault, Victoria, Australia. Journal of Geophysical Research:Solid Earth, 100(B7):12841-12859. https://doi.org/10.1029/95jb00915
      Cox, S. F., 2007. Structural and Isotopic Constraints on Fluid Flow Regimes and Fluid Pathways during Upper Crustal Deformation:An Example from the Taemas Area of the Lachlan Orogen, SE Australia. Journal of Geophysical Research, 112(B8):B08208.
      Eisenlohr, B.N., Groves, D., Partington, G.A., 1989.Crustal-Scale Shear Zones and Their Significance to Archaean-Gold Mineralization in Western Australia. Mineralium Deposita, 24(1):1-8.
      Fu, J.G., Li, G.M., Wang, G.H., et al., 2017.First Field Identi-fication of the Cuonadong Dome in Southern Tibet:Im-plications for EW Extension of the North Himalayan Gneiss Dome. International Journal of Earth Sciences, 106(5):1581-1596. https://doi.org/10.1007/s00531-016-1368-2
      Guillot, S., Le Fort, P., 1995.Geochemical Constraints on the Bimodal Origin of High Himalayan Leucogranites. Lith-os, 35(3-4):221-234. https://doi.org/10.1016/0024-4937(94)00052-4
      Harris, N., Massey, J., 1994. Decompression and Anatexis of Himalayan Metapelites. Tectonics, 13(6):1537-1546. https://doi.org/10.1029/94tc01611
      Hauck, M.L., Nelson, K.D., Brown, L.D., et al., 1998.Crustal Structure of the Himalayan Orogen at ~ 90° East Longi-tude from Project INDEPTH Deep Reflection Profiles. Tectonics, 17(4):481-500. https://doi.org/10.1029/98tc01314
      Hodges, K.V., 2000.Tectonics of the Himalaya and Southern Tibet from Two Perspectives. Geological Society of America Bulletin, 112(3):324-350. doi: 10.1130/0016-7606(2000)112<324:TOTHAS>2.0.CO;2
      Hodges, K.V., Parrish, R.R., Housh, T.B., et al., 1992.Simul-taneous Miocene Extension and Shortening in the Hima-layan Orogen. Science, 258(5087):1466-1470. https://doi.org/10.1126/science.258.5087.1466
      Hou, Z.Q., 2010.Metallogenesis of Continental Collision.Acta Geologica Sinica, 84(1):30-58(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201304026
      Hou, Z.Q., Qu, X.M., Yang, Z.S., et al., 2006c.Metallogene-sis in Tibetan Collisional Orogenic Belt:Ⅲ. Mineraliza-tion in Post-Collisional Extension Setting. Mineral De-posits, 25(6):629-651(in Chinese with English abstract).
      Hou, Z.Q., Pan, G.T., Wang, A.J., et al., 2006b.Metallogene-sis in Tibetan Collisional Orogenic Belt:Ⅱ. Mineraliza-tion in Late-Collisional Transformation Setting.Mineral Deposits, 25(5):521-543(in Chinese with English ab-stract).
      Hou, Z.Q., Yang, Z.S., Xu, W.Y., et al., 2006a.Metallogene-sis in Tibetan Collisional Orogenic Belt:Ⅰ.Mineralizatio-nin Main Collisional Orogenic Setting.Mineral Deposits, 25(4):337-358(in Chinese with English abstract).
      Hou, Z.Z., Yang, W.C., Liu, J.Q., 1998.Multiscale Inversion of the Density Contrast within the Crust of China. Chi-nese Journal of Geophysics, 41(5):642-651(in Chinese with English abstract).
      Jiao, Y.J., Liang, S.X., Guo, J., et al., 2015.Comparative Re-search on the Combinational Test of Geophysical Meth-ods in the Zhaxikang Lead-Zinc Ore Concentration Area, Tibet.Geophysical and Geochemical Exploration, 39(2):245-252(in Chinese with English abstract).
      Jiao, Y.J., Liang, S.X., Guo, J., 2017.Research on the Predic-tion of Tibet Sangrize Black Rock Series Positioning Structure Hydrothermal Type Pb, Zn Ore. Progress in Geophysics, 32(2):634-639(in Chinese with English ab-stract).
      Kapp, P., Guynn, J.H., 2004.Indian Punch Rifts Tibet.Geolo-gy, 32(11):993-996. https://doi.org/10.1130/g20689.1
      Laigle, M., Hirn, A., Sachpazi, M., et al., 2000.North Aegean Crustal Deformation:An Active Fault Imaged to 10 km Depth by Reflection Seismic Data. Geology, 28(1):71-74. doi: 10.1130/0091-7613(2000)28<71:NACDAA>2.0.CO;2
      Lee, J., Whitehouse, M.J., 2007.Onset of Mid-Crustal Exten-sional Flow in Southern Tibet:Evidence from U/Pb Zir-con Ages. Geology, 35(1):45-48. https://doi.org/10.1130/g22842a.1
      Li, Y.X., Li, G.M., Dong, S.L., et al., 2015.Preliminary Study on Fluid Evolution in the Ore Forming Process of the Zhaxikang Polymetallic Deposit, Tibet, China. Bulletin of Mineralogy, Petrology and Geochemistry, 34(3):571-582.(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201503017
      Liang, W., 2014.Metallogenesis of Au-Sb-Pb-Zn mineraliza-tion in Tethys Himalaya Belt, South Tibet, China(Disser-tation). China University of Geosciences, Beijing(in Chi-nese with English abstract).
      Liang, W., Yang, Z, S., Zheng, Y.C., 2015.The Zhaxikang Pb-Zn Polymetallic Deposit:Ar-Ar Age of Sericite and Its Metallogenic Significance.Acta Geologica Sinica, 89(3):560-568(in Chinese with English abstract).
      Liu, T.Y., Yang, Y.S., Li, Y.Y., et al., 2007.The Order-De-pression Solution for Large-Scale Integral Equation and Its Application in the Reduction of Gravity Data to a Horizontal Plane. Chinese Journal of Geophysics, 50(1):290-296(in Chinese with English abstract).
      Liu, W. C., Wang, Y., Zhang, X. X., et al., 2004. The Rock Types and Isotope Dating of the Kangmar Gneissic Dome in Southern Tibet.Earth Science Frontiers, 11(4):491-501 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200404015
      Liu, Z., Zhou, Q., Lai, Y., et al., 2015.Petrogenesis of the Ear-ly Cretaceous Laguila Bimodal Intrusive Rocks from the Tethyan Himalaya:Implications for the Break-up of East-ern Gondwana. Lithos, 236-237:190-202. https://doi.org/10.1016/j.lithos.2015.09.006
      Liu, Z.C., Wu, F.Y., Ji, W.Q., et al., 2014.Petrogenesis of the Ramba Leucogranite in the Tethyan Himalaya and Con-straints on the Channel Flow Model. Lithos, 208-209:118-136. https://doi.org/10.1016/j.lithos.2014.08.022
      McCaig, A. M., Wickham, S. M., Taylor, H. P., 1990. Deep Fluid Circulation in Alpine Shear Zones, Pyrenees, France:Field and Oxygen Isotope Studies.Contributions to Mineralogy and Petrology, 106(1):41-60. https://doi.org/10.1007/bf00306407
      Meng, X.J., Yang, Z.S., Qi, X.X., et al., 2008.Silicon-Oxygen-Hydrogen Isotopic Compositions of Zaxikang Antimony Polymetallic Deposit in Southern Tibet and Its Respons-es to the Ore-Controlling Structure.Acta Petrologica Si-nica, 24(7):1649-1655(in Chinese with English ab-stract).
      Micklethwaite, S., Cox, S. F., 2004. Fault-Segment Rupture, Aftershock-Zone Fluid Flow, and Mineralization.Geolo-gy, 32(9):813-816. https://doi.org/10.1130/g20559.1
      Murphy, M. A., Mark Harrison, T., 1999. Relationship be-tween Leucogranites and the Qomolangma Detachment in the Rongbuk Valley, South Tibet. Geology, 27(9):831-834. doi: 10.1130/0091-7613(1999)027<0831:RBLATQ>2.3.CO;2
      Nelson, K. D., Zhao, W., Brown, L. D., et al., 1996. Partially Molten Middle Crust beneath Southern Tibet:Synthesis of Project INDEPTH Results.Science, 274(5293):1684-1688. https://doi.org/10.1126/science.274.5293.1684
      Rodi, W.L., MacKie, R.L., 2001.Nonlinear Conjugate Gradi-ents Algorithm for 2-D Magnetotelluric Inversion. Geo-physics, 66(1):174-187.
      Searle, M.P., Khan, M.A., Fraser, J.E., et al., 1999.The Tectonic Evolution of the Kohistan-Karakoram Collision Belt along the Karakoram Highway Transect, North Pak-istan. Tectonics, 18(6):929-949. https://doi.org/10.1029/1999tc900042
      Searle, M.P., Parrish, R.R., Hodges, K.V., et al., 1997.Shisha Pangma Leucogranite, South Tibetan Himalaya:Field Relations, Geochemistry, Age, Origin, and Emplacement.The Journal of Geology, 105(3):295-318. https://doi.org/10.1086/515924
      Smith, J.T., Booker, J.R., 1991.Rapid Inversion of Two-and Three-Dimensional Magnetotelluric Data. Journal of Geophysical Research:Solid Earth, 96(B3):3905-3922. doi: 10.1029/90JB02416
      Sun, X., Zheng, Y.Y., Pirajno, F., et al., 2018.Geology, S-Pb Isotopes, and 40Ar/39Ar Geochronology of the Zhaxikang Sb-Pb-Zn-Ag Deposit in Southern Tibet:Implications for Multiple Mineralization Events at Zhaxikang. Minerali-um Deposita, 53(3):435-458. https://doi.org/10.1007/s00126-017-0752-6
      Visonà, D., Carosi, R., Montomoli, C., et al., 2012. Miocene Andalusite Leucogranite in Central-East Himalaya (Ever-est-Masang Kang Area):Low-Pressure Melting during Heating. Lithos, 144-145:194-208. https://doi.org/10.1016/j.lithos.2012.04.012
      Wang, J. Y., 1992. Problem about Static Correction in Mag-netotellurics. Geological Science and Technology Infor-mation, 11(1):69-76(in Chinese with English abstract).
      Wei, W.B., Unsworth, M., Jones, A., et al., 2001.Detection of Widespread Fluids in the Tibetan Crust by Magnetotellu-ric Studies. Science, 292(5517):716-719. https://doi.org/10.1126/science.1010580
      Williams, H., Turner, S., Kelley, S., et al., 2001. Age and Composition of Dikes in Southern Tibet:New Con-straints on the Timing of East-West Extension and Its Relationship to Postcollisional Volcanism. Geology, 29(4):339-342. doi: 10.1130/0091-7613(2001)029<0339:AACODI>2.0.CO;2
      Xu, Z.Q., Yang, J.S., Jiang, M., et al., 1999.Continental Sub-duction and Uplifting of the Orogenic Belts at the Mar-gin of the Qinghai-Tibet Plateau. Earth Science Fron-tiers, 6(3):139-151(in Chinese with English abstract).
      Yao, C. L., Hao, T. Y., Guan, Z. N., et al., 2003. High-Speed Computation and Efficient Storage in 3-D Gravity and Magnetic Inversion Based on Genetic Algorithms. Chi-nese Journal of Geophysics, 46(2):252-258(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200302020
      Yin, A., 2001. Geologic Evolution of the Himalayan-Tibetan Orogen in the Context of Phanerozoic Continental Growth of Asia.Acta Geoscientia Sinica, 22(3):193-230(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb200103001
      Yin, A., 2006.Cenozoic Tectonic Evolution of the Himalayan Orogen as Constrained by Along-Strike Variation of Structural Geometry, Exhumation History, and Foreland Sedimentation.Earth-Science Reviews, 76(1-2):1-131. https://doi.org/10.1016/j.earscirev.2005.05.004
      Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Hi-malayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      Yin, A., Kapp, P. A., Murphy, M. A., et al., 1999. Significant Late Neogene East-West Extension in Northern Tibet.Geology, 27(9):787-790. doi: 10.1130/0091-7613(1999)027<0787:SLNEWE>2.3.CO;2
      Yin, A., Taylor, M. H., 2011. Mechanics of V-Shaped Conju-gate Strike-Slip Faults and the Corresponding Continu-um Mode of Continental Deformation.Geological Society of America Bulletin, 123(9-10):1798-1821. https://doi.org/10.1130/b30159.1
      Zhang, J.F., 2010.The Genesis Study of Zhaxikang Lead Zinc Antimony Silver Deposit, North Himalayan(Disserta-tion). China University of Geosciences, Wuhan(in Chi-nese with English abstract).
      Zhang, J. J., 2007. A Review on the Extensional Structures in the Northern Himalaya and Southern Tibet. Geological Bulletin of China, 26(6):639-649(in Chinese with Eng-lish abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200706003
      Zhang, J.J., Yang, X.Y., Qi, G.W., et al., 2011.Geochronolo-gy of the Malashan Dome and Its Application in Forma-tion of the Southern Tibet Detachment System (STDS) and Northern Himalayan Gneiss Domes (NHGD). Acta Petrologica Sinica, 27(12):3535-3544(in Chinese with English abstract).
      Zheng, Y. Y., Duo, J., Ma, G. T., et al., 2007. Mineralization Characteristics, Discovery and Age Restriction of Chala-pu Hardrock Gold Deposit, Southern Tibet. Earth Sci-ence, 32(2):185-193(in Chinese with English abstract).
      Zheng, Y. Y., Liu, M. Y., Sun, X., et al., 2012. Type, Discov-ery Process and Significance of Zhaxikang Antimony Polymetallic Ore Deposit, Tibet. Earth Science, 37(5):1003-1014(in Chinese with English abstract).
      Zheng, Y.Y., Sun, X., Tian, L.M., et al., 2014.Mineralization, Deposit Type and Metallogenic Age of the Gold Antimo-ny Polymetallic Belt in the Eastern Part of North Himala-yan. Geotectonica et Metallogenia, 38(1):108-118 (in Chinese with English abstract).
      Zhou, Q., Li, W.C., Qing, C.S., et al., 2017. Origin and Tec-tonic Implications of the Zhaxikang Pb-Zn-Sb-Ag Depos-it in Northern Himalaya:Evidence from Structures, Re-Os-Pb-S Isotopes, and Fluid Inclusions. Mineralium Deposita, 2:1-16.
      Zhu, D.C., Chung, S.L., Mo, X.X., et al., 2009.The 132 Ma Comei-Bunbury Large Igneous Province:Remnants Iden-tified in Present-Day Southeastern Tibet and Southwest-ern Australia.Geology, 37(7):583-586. https://doi.org/10.1130/g30001a.1
      陈昌彦, 王思敬, 王贵荣, 等, 1996.陕西渭北东部区新生代伸展构造网络系统对奥灰水的控制作用.地质力学学报, 2(4):21-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600065233
      陈智梁, 刘宇平, 1996.藏南拆离系.特提斯地质, (20):32-51. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200609013
      侯增谦, 2010.大陆碰撞成矿论.地质学报, 84(1):30-58. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201001002
      侯增谦, 杨竹森, 徐文艺, 等, 2006a.青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用.矿床地质, 25(4):337-358. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001
      侯增谦, 潘桂棠, 王安建, 等, 2006b.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用.矿床地质, 25(5):521-543. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200605000.htm
      侯增谦, 曲晓明, 杨竹森, 等, 2006c.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用.矿床地质, 25(6):629-651. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001
      侯遵泽, 杨文采, 刘家琦, 1998.中国大陆地壳密度差异多尺度反演.地球物理学报, 41(5):642-651. doi: 10.3321/j.issn:0001-5733.1998.05.007
      焦彦杰, 梁生贤, 郭镜, 2017.西藏桑日则黑色岩系构造热液型铅锌矿定位预测研究.地球物理学进展, 32(2):634-639. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201702025
      焦彦杰, 梁生贤, 郭镜, 等, 2015.西藏扎西康铅锌矿集区的物探方法组合试验.物探与化探, 39(2):245-252. http://d.old.wanfangdata.com.cn/Periodical/wtyht201502006
      李应栩, 李光明, 董随亮, 等, 2015.西藏扎西康多金属矿床成矿过程中的流体性质演化初探.矿物岩石地球化学通报, 34(3):571-582. doi: 10.3969/j.issn.1007-2802.2015.03.014
      梁维, 2014.特提斯喜马拉雅金锑铅锌成矿带成矿作用研究(博士学位论文).北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-1017246484.htm
      梁维, 杨竹森, 郑远川, 2015.藏南扎西康铅锌多金属矿绢云母Ar-Ar年龄及其成矿意义.地质学报, 89(3):560-568. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201503009
      刘天佑, 杨宇山, 李媛媛, 等, 2007.大型积分方程降阶解法与重力资料曲面延拓.地球物理学报, 50(1):290-296. doi: 10.3321/j.issn:0001-5733.2007.01.036
      刘文灿, 王瑜, 张祥信, 等, 2004.西藏南部康马岩体岩石类型及其同位素测年.地学前缘, 11(4):491-501. doi: 10.3321/j.issn:1005-2321.2004.04.015
      孟祥金, 杨竹森, 戚学祥, 等, 2008.藏南扎西康锑多金属矿硅-氧-氢同位素组成及其对成矿构造控制的响应.岩石学报, 24(7):1649-1655. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200807021
      王家映, 1992.关于大地电磁的静校正问题.地质科技情报, 11(1):69-76. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000361759
      许志琴, 杨经绥, 姜枚, 等, 1999.大陆俯冲作用及青藏高原周缘造山带的崛起.地学前缘, 6(3):139-151. doi: 10.3321/j.issn:1005-2321.1999.03.014
      姚长利, 郝天珧, 管志宁, 等, 2003.重磁遗传算法三维反演中高速计算及有效存储方法技术.地球物理学报, 46(2):252-258. doi: 10.3321/j.issn:0001-5733.2003.02.020
      尹安, 2001.喜马拉雅-青藏高原造山带地质演化-显生宙亚洲大陆生长.地球学报, 22(3):193-230. doi: 10.3321/j.issn:1006-3021.2001.03.001
      张建芳, 2010.北喜马拉雅扎西康铅锌锑银矿床成因研究(硕士学位论文).武汉: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-10491-2010250581.htm
      张进江, 2007.北喜马拉雅及藏南伸展构造综述.地质通报, 26(6):639-649. doi: 10.3969/j.issn.1671-2552.2007.06.003
      张进江, 杨雄英, 戚国伟, 等, 2011.马拉山穹窿的活动时限及其在藏南拆离系:北喜马拉雅片麻岩穹窿形成机制的应用.岩石学报, 27(12):3535-3544. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201112003
      郑有业, 多吉, 马国桃, 等, 2007.藏南查拉普岩金矿床特征、发现及时代约束.地球科学, 32(2):185-193. doi: 10.3321/j.issn:1000-2383.2007.02.005
      郑有业, 刘敏院, 孙祥, 等, 2012.西藏扎西康锑多金属矿床类型、发现过程及意义.地球科学, 37(5):1003-1014. http://www.earth-science.net/WebPage/Article.aspx?id=2305
      郑有业, 孙祥, 田立明, 等, 2014.北喜马拉雅东段金锑多金属成矿作用、矿床类型与成矿时代.大地构造与成矿学, 38(1):108-118. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201401011
    • dqkx-44-6-2129-Table.pdf
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)

      Article views (4038) PDF downloads(74) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return