• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 6
    Jun.  2019
    Turn off MathJax
    Article Contents
    Tian Feng, Leng Chengbiao, Zhang Xingchun, Tian Zhendong, Zhang Wei, Guo Jianheng, 2019. Application of Short-Wave Infrared Spectroscopy in Gangjiang Porphyry Cu-Mo Deposit in Nimu Ore Field, Tibet. Earth Science, 44(6): 2143-2154. doi: 10.3799/dqkx.2018.373
    Citation: Tian Feng, Leng Chengbiao, Zhang Xingchun, Tian Zhendong, Zhang Wei, Guo Jianheng, 2019. Application of Short-Wave Infrared Spectroscopy in Gangjiang Porphyry Cu-Mo Deposit in Nimu Ore Field, Tibet. Earth Science, 44(6): 2143-2154. doi: 10.3799/dqkx.2018.373

    Application of Short-Wave Infrared Spectroscopy in Gangjiang Porphyry Cu-Mo Deposit in Nimu Ore Field, Tibet

    doi: 10.3799/dqkx.2018.373
    • Received Date: 2018-09-28
    • Publish Date: 2019-06-15
    • In order to reveal the alteration and mineralization structure of the Gangjiang porphyry copper-molybdenum deposit, the short-wave infrared spectroscopy (SWIR) technique was systematically used to analyze the four drill-holes in the typical section of the deposit.Five types of altered mineral groups were detected, i.e.sericite, kaolinite, chlorite, sulphate and carbonate.Short wave infrared spectroscopy results of sericite show that there is a greater illite crystallinity (≥ 1.5) and a smaller sericite Al-OH absorption position (≤ 2 205 nm) towards the ore body.However, the value of illite crystallinity and sericite Al-OH absorption position distal the ore body are 0.8-1.2 and 2 207-2 209 nm, respectively.In addition, the iron oxide intensity value is synchronized oxidized ore body.It is indicated that these characteristic parameters of short-wave infrared spectroscopy are helpful to the understanding of the alteration and mineralization structure of the Gangjiang porphyry Cu-Mo deposit, which may effectively restrict the ore-forming fluid condition and provide a potential prospecting indicator for the target mine and other similar mining areas.

       

    • loading
    • Chang, Z., Yang, Z., 2012.Evaluation of Inter-Instrument Variations among Short Wavelength Infrared (SWIR) De-vices.Economic Geology, 107(7):1479-1488. https://doi.org/10.2113/econgeo.107.7.1479
      Chang, Z.S., Hedenquist, J.W., White, N.C., et al., 2011.Ex-ploration Tools for Linked Porphyry and Epithermal De-posits:Example from the Mankayan Intrusion-Centered Cu-Au District, Luzon, Philippines.Economic Geology, 106(8):1365-1398. https://doi.org/10.2113/econ-geo.106.8.1365
      Chen, S.B., Huang, B.Q., Li, C., et al., 2018.Alteration and Mineralization of the Yuhai Cu Deposit in Eastern Tian-shan, Xinjiang and Applications of Short Wavelength In-fra-Red (SWIR) in Exploration.Earth Science, 43(9):2911-2928(in Chinese with English abstract).
      Clark, R.N., King, T.V.V., Klejwa, M., et al., 1990.High Spectral Resolution Reflectance Spectroscopy of Minerals.Journal of Geophysical Research, 95(B8):12653-12680. doi: 10.1029/JB095iB08p12653
      Duke, E.F., 1994.Near Infrared Spectra of Muscovite, Tscher-mak Substitution, and Metamorphic Reaction Progress:Implications for Remote Sensing.Geology, 22(7):621. doi: 10.1130/0091-7613(1994)022<0621:NISOMT>2.3.CO;2
      Guo, N., Thomas, C., Tang, J.X., et al., 2017.Mapping White Mica Alteration Associated with the Jiama Porphyry-Skarn Cu Deposit, Central Tibet Using Field SWIR Spectrometry.Ore Geology Reviews. https://doi.org/10.1016/j.oregeorev.2017.07.027
      Halley, S., Dilles, J.H., Tosdal, R.M., 2015.Footprints:Hydro-thermal Alteration and Geochemical Dispersion around Porphyry Copper Deposits.SEG Newsletter, 100:11-17 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0216533037/
      Herrmann, W., Blake, M., Doyle, M., et al., 2001.Short Wave-length Infrared (SWIR) Spectral Analysis of Hydrother-mal Alteration Zones Associated with Base Metal Sul-fide Deposits at Rosebery and Western Tharsis, Tasma-nia, and Highway-Reward, Queensland.Economic Geolo-gy, 96(5):939-955. https://doi.org/10.2113/96.5.939
      Hou, Z.Q., Yang, Z.M., Qu, X.M., et al., 2009.The Miocene Gangdese Porphyry Copper Belt Generated during Post-Collisional Extension in the Tibetan Orogen.Ore Geolo-gy Reviews, 36(1-3):25-51. https://doi.org/10.1016/j.oregeorev.2008.09.006
      Hunt, G.R., 1977.Spectral Signatures of Particulate Minerals in the Visible and near Infrared.Geophysics, 42(3):501-513. https://doi.org/10.1190/1.1440721
      Jones, S., 2005.Short Wavelength Infrared Spectral Characteris-tics of the HW Horizon:Implications for Exploration in the Myra Falls Volcanic-Hosted Massive Sulfide Camp, Van-couver Island, British Columbia, Canada.Economic Geolo-gy, 100(2):273-294. https://doi.org/10.2113/100.2.273
      Leng, C.B., Zhang, X.C., Zhong, H., et al., 2013.Re-Os Mo-lybdenite Ages and Zircon Hf Isotopes of the Gangjiang Porphyry Cu-Mo Deposit in the Tibetan Orogen.Minera-lium Deposita, 48(5):585-602. https://doi.org/10.1007/s00126-012-0448-x
      Leng, C.B., Zhang, X.C., Zhou, W.D., 2010.A Primary Study of the Geological Characteristics and the Zircon U-Pb Age of the Gangjiang Porphyry Copper-Molybdenum Deposit in Nimu, Tibet.Earth Science Frontiers, 17(2):185-197(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201002017
      Li, J.X., Qin, K.Z, Li, G.M., et al., 2007.K-Ar and 40Ar-39Ar Age Dating of Nimu Porphyry Copper Orefield in Central Gangdese:Constrains on Magmatic-Hydrothermal Evolu-tion and Metallogenetic Tectonic Setting.Acta Petrologica Sinica, 23(5):953-966(in Chinese with English abstract).
      Lian, C.Y, Zhang, G., Yuan, C.H., 2005a.Application of SWIR Reflectance Spectroscopy to Pulang Porphyry Copper Ore District, Yunnan Province.Mineral Deposits, 24(6):621-637(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200506006
      Lian, C.Y., Zhang, G., Yuan, C.H., et al., 2005b.Application of SWIR Reflectance Spectroscopy in Mapping of Hy-drothermal Alteration Minerals:A Case Study of the Tu-wu Porphyry Copper Prospect, Xinjiang.Geology in Chi-na, 32(3):483-495(in Chinese with English abstract).
      Lowell, J.D., Guilbert, J.M., 1970.Lateral and Vertical Altera-tion-Mineralization Zoning in Porphyry Ore Deposits.Economic Geology, 65(4):373-408. https://doi.org/10.2113/gsecongeo.65.4.373
      Neal, L.C., Wilkinson, J.J., Mason, P.J., et al., 2018.Spectral Characteristics of Propylitic Alteration Minerals as a Vectoring Tool for Porphyry Copper Deposits.Journal of Geochemical Exploration, 184:179-198. https://doi.org/10.1016/j.gexplo.2017.10.019
      Sillitoe, R.H., 2010.Porphyry Copper Systems.Economic Ge-ology, 105(1):3-41. https://doi.org/10.2113/gsecon-geo.105.1.3
      Thompson, A.J.B., Hauff, P.L., Robitaille, A.J., 1999.Altera-tion Mapping in Exploration:Application of Short-Wave In-frared (SWIR) Spectroscopy.SEG Newsletter, 39:1-13.
      van Ruitenbeek, F.J.A., Cudahy, T., Hale, M., et al., 2005.Tracing Fluid Pathways in Fossil Hydrothermal Systems with Near-Infrared Spectroscopy.Geology, 33(7):597. doi: 10.1130/G21375.1
      Wang, R., Cudahy, T., Laukamp, C., et al., 2017.White Mica as a Hyperspectral Tool in Exploration for the Sunrise Dam and Kanowna Belle Gold Deposits, Western Aus-tralia.Economic Geology, 112(5):1153-1176. https://doi.org/10.5382/econgeo.2017.4505
      Wang, X.C., Yan, Z.G., Zhou, W.D., et al., 2002.Preliminary Study on Geological Features of Porphyry-Type Copper Deposits in the Northwesten Nimu, Middle Section of Gangdisi Belt, Tibet.Geology and Prospecting, 38(1):5-8(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt200201003
      Xu, C., Chen, H.Y., White, N., et al., 2017.Alteration and Mineralization of Xinan Cu-Mo Ore Deposit in Zijinshan Orefield, Fujian Province, and Application of Short Wavelength Infra-Red Technology (SWIR) to Explora-tion.Mineral Deposits, 36(5):1013-1038(in Chinese with English abstract).
      Yang, K., Browne, P.R.L., Huntington, J.F., et al., 2001.Char-acterising the Hydrothermal Alteration of the Broadlands-Ohaaki Geothermal System, New Zealand, Using Short-Wave Infrared Spectroscopy.Journal of Volcanology and Geothermal Research, 106(1-2):53-65. doi: 10.1016/S0377-0273(00)00264-X
      Yang, K., Huntington, J.F., Gemmell, J.B., et al., 2011.Varia-tions in Composition and Abundance of White Mica in the Hydrothermal Alteration System at Hellyer, Tasma-nia, as Revealed by Infrared Reflectance Spectroscopy.Journal of Geochemical Exploration, 108(2):143-156. https://doi.org/10.1016/j.gexplo.2011.01.001
      Yang, K., Lian, C., Huntington, J.F., et al., 2005.Infrared Spectral Reflectance Characterization of the Hydrother-mal Alteration at the Tuwu Cu-Au Deposit, Xinjiang, China.Mineralium Deposita, 40(3):324-336. https://doi.org/10.1007/s00126-005-0479-7
      Yang, Z., Jiang, H., Yang, M.G., et al., 2017.Zircon U-Pb and Molybdenite Re-Os Dating of the Gangjiang Porphyry Cu-Mo Deposit in Central Gangdese and Its Geological Significance.Earth Science, 42(3):339-356(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201703003
      Yang, Z.M., Hou, Z.Q., Yang, Z.S., et al., 2012.Application of Short Wavelength Infrared (SWIR) Technique in Ex-ploration of Poorly Eroded Porphyry Cu District:A Case Study of Niancun Ore District, Tibet.Mineral Deposits, 31(4):699-717(in Chinese with English abstract).
      Zhang, G., Lian, C.Y., Wang, R.S., 2005.Application of the Portable Infrared Mineral Analyser (PIMA) in Mineral Mapping in the Qulong Copper Prospect, Mozhugongka County, Tibet.Geological Bulletin of China, 24(5):480-484(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200505015
      Zhang, S.T, Chen, H.Y., Zhang, X.B., 2017.Application of Short Wavelength Infrared(SWIR)Technique to Explora-tion of Skarn Deposit:A Case Study of Tonglvshan Cu-Fe-Au deposit, Edongnan (Southeast Hubei) Ore Con-centration Area.Mineral Deposits, 36(6):1263-1288(in Chinese with English abstract).
      陈寿波, 黄宝强, 李琛, 等, 2018.新疆东天山玉海铜矿蚀变矿化特征及SWIR勘查应用研究.地球科学, 43(9):2911-2928. http://www.earth-science.net/WebPage/Article.aspx?id=3924
      冷成彪, 张兴春, 周维德, 2010.西藏尼木地区岗讲斑岩铜-钼矿床地质特征及锆石U-Pb年龄.地学前缘, 17(2):185-197. http://d.old.wanfangdata.com.cn/Periodical/dxqy201002017
      李金祥, 秦克章, 李光明, 等, 2007.冈底斯中段尼木斑岩铜矿田的K-Ar、40Ar/39Ar年龄:对岩浆-热液系统演化和成矿构造背景的制约.岩石学报, 23(5):953-966.
      连长云, 章革, 元春华, 等, 2005a.短波红外光谱矿物测量技术在普朗斑岩铜矿区热液蚀变矿物填图中的应用.矿床地质, 24(6):621-637. http://d.old.wanfangdata.com.cn/Periodical/kcdz200506006
      连长云, 章革, 元春华, 等, 2005b.短波红外光谱矿物测量技术在热液蚀变矿物填图中的应用——以土屋斑岩铜矿床为例.中国地质, 32(3):483-495. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200503019
      王小春, 晏子贵, 周维德, 等, 2002.初论西藏冈底斯带中段尼木西北部斑岩铜矿地质特征.地质与勘探, 38(1):5-8. doi: 10.3969/j.issn.0495-5331.2002.01.003
      许超, 陈华勇, White, N., 等, 2017.福建紫金山矿田西南铜钼矿段蚀变矿化特征及SWIR勘查应用研究.矿床地质, 36(5):1013-1038. http://d.old.wanfangdata.com.cn/Periodical/kcdz201705001
      杨震, 姜华, 杨明国, 等, 2017.冈底斯中段岗讲斑岩铜钼矿床锆石U-Pb和辉钼矿Re-Os年代学及其地质意义.地球科学, 42(3):339-356. http://www.earth-science.net/WebPage/Article.aspx?id=3545
      杨志明, 侯增谦, 杨竹森, 等, 2012.短波红外光谱技术在浅剥蚀斑岩铜矿区勘查中的应用:以西藏念村矿区为例.矿床地质, 31(4):699-717. doi: 10.3969/j.issn.0258-7106.2012.04.004
      章革, 连长云, 王润生, 2005.便携式短波红外矿物分析仪(PI-MA)在西藏墨竹工卡县驱龙铜矿区矿物填图中的应用.地质通报, 24(5):480-484. doi: 10.3969/j.issn.1671-2552.2005.05.015
      张世涛, 陈华勇, 张小波, 等, 2017.短波红外光谱技术在矽卡岩型矿床中的应用——以鄂东南铜绿山铜铁金矿床为例.矿床地质, 36(6):1263-1288. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201706002
    • dqkx-44-6-2143-Table.pdf
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)

      Article views (6207) PDF downloads(92) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return